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Abstract: In this pilot study, we aim to establish the changes needed to investigate whether
edge Al can lead to real-time anomaly detection in the grid. In designing anomaly detection
techniques, numerous other Al techniques such as artificial neural networks, among many
others, have been investigated in previous works. However, only a few investigate their use
for real-time anomaly detection in power systems. This pilot research looks into the
possibility of developing a real-time anomaly detection methodology for smart grids. A part
of this is casting the anomaly detection algorithm in a way it can be deployed on the edge.
This section aims to review a literature survey that contains all the methods and algorithms
used in the anomaly detection process. The section starts by addressing the need for the
intervention of anomaly detection systems to mitigate the risk of attacks. Then the survey
presents the well-established methods of anomaly detection. The last part of this section
will review the previous attempt of moving anomaly detection to the edge of networks. In-
depth details of each algorithm will be presented in the next section.
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sensing resources, as they present potential points of
weakness to the smart grid network. Specifically, the paper
discusses the potential utility and the innovative
contribution of a pilot study of a sparsely populated rural
network. Here, the main objectives are to explore the

is facing increased demand for localized solutions ~ challenge, answer the questions, test our new solution, and

to drive operational efficiency, security, reliability, evaluate its suitability for furthering smart grid technologies
and economic viability. Edge computing technology can [1].
play a crucial role in processing in real time vast quantities

1. Introduction

ITH the swift progression toward a digital electric
power network, the electricity distribution segment

At present, electrical networks are monitored through an

of data gathered from the distribution network that are
impractical to send to the centralized level, while preventing
a huge amount of data from being stored in the
communication network layer that is both a risk and costly.
Additionally, real-time analytics performed on edge
computing allow for immediate responses to instantaneous
grid events and conditions. This paper focuses on real-time
edge Al in anomaly detection within the electrical meter-

acquisition system that uses control outputs on SCADA,
Remote Terminal Units, or Programmable Logic
Controllers. In this architecture, data from the metering
devices are used as secondary sources of monitoring and
analysis. Traditional monitoring systems are facing several
critical issues such as a lack of direct real-time acquisitions,
data in standby or only recorded at regular time periods, and
selected/averaged input/output at the final level. For this
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reason, many important events, even if recorded in a
historical data logger, are just never properly identified.
Even when they are, the information arrives after it has
already happened. Consequently, this makes it difficult for
engineers and managers to properly validate persistent
issues. The paper's focus is to address the challenge of
leveraging real-time edge Al to perform localized and
immediate identification of emerging issues within
residential and small business distribution networks. This
paper discusses the performed literature review and
introduces a novel approach which is presented in this
section [2]. Following this, the section Problem Statement
and Objective frames the main research issues. The final
section is an outline of the paper. In summary, the
contributions of this paper are the results of the pilot study,
and we introduce a foundational concept. In the following
sections, we will answer the question left open in the
literature: which machine-learning-based techniques are
better suited for anomaly detection powered by edge
computing. Smart grids, also known as intelligent or
adaptive power grids, are the next generation of traditional
power grids that have been revolutionized by the integration
of state-of-the-art technology. They not only offer power
flow among resources within the grid, but also can gather
and distribute real-time data which can assist the grid
operators in comprehending grid behavior encompassing
demand-supply dynamics [3]. The achievement of a power
grid, however, entirely depends on the precise allocation of
the needed energy to the required location. Additionally,
small lazy allocation of adoption makes the grid more
beneficial for customers. Thus, one of the primary
objectives of power transmission and distribution is to make
it as efficient as possible. In the smart grid framework, the
flow of power from the grid to the end-users, i.e., the load
in a fraction of time can reduce the physical damage to the
assets of the power distributors [4].

Nowadays, energy demands fluctuate frequently
depending on user satisfaction. This initiative demands that
the power grid be saliently adaptive to shifts in demands. In
several recent literature, it has been expressed that Al can be
productively integrated for the management of the
operations of smart grid systems by ensuring reliable, stable,
and optimized responses to consumers at all times. However,
Al is presumed by the existing power systems to enhance
grid operations without much focus on data intensity, i.e.,
performing real-time big data analytics. From the studies of
the literature, it is found that there is no big battery available
right now to store the data and process that data in the grid
and Al at the same time, where the volume of data is
increasing rapidly, which impels us to investigate anomaly
detection techniques in the upstream domain of data
processing in the data network, i.e., on the edge. By
assimilating Al with real-time big data analytics of the smart
grid, it can offer countless improvements including the
integration of more demand-side management resources.
Hence, to accomplish the above-specified operation, an Al
function known as 'anomaly detection' is to be integrated
with the data with negligible implementation expenses.
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Furthermore, for the time commitment, this Al-integrated
data can be regarded as more than conventional data
solutions. A duo-integrated Al anomaly detection platform
can facilitate the efficient operations of the power system
and can ensure seamless solutions to fossil-fuel dependent
utilities and prosumers [5]. The electricity grid is becoming
smarter with various modern functionalities and advanced
capabilities. Many previous works have addressed many
details of smart grids. Power systems and the electric grid
have unique characteristics that must be considered when
designing anomaly detection methods. In designing
anomaly detection techniques, environmental parameters
and key performance indicators are unique nominal
parameters that require particular attention. Consequently,
the application of anomaly detection techniques for smart
grids and power systems has been studied as well. However,
only a few applications are designed to work in real-time
due to edge computing [6]. The present paper aims to
explore the possibility of implementing Al algorithms at the
edge level for real-time anomaly detection in power grids.
We propose a methodology for developing a real-time
processing module by integrating Al and edge computation.
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Figure 1. Edge computing architecture [6]

2. Smart Grids and Power Distribution
Networks

A smart grid is seen not only as the next-generation
distribution network, but also as a parallel effort to advance
the evolution of power distribution networks and fully
extend them into the digital age. It has local and global
optimization algorithms and communication systems, such
as supervisory control and data acquisition and an advanced
metering infrastructure. Most importantly, it consists of a
large number of high-resolution, fast-responding, and two-
way instantaneous measurements to implement real-time
analysis of the power systems and support power system
applications. The application functions include distortion
detection, low-voltage control, self-healing capabilities,
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estimated state-of-the-art, and load diversion [7]. The
increasing technological complexity of the power
distribution network calls for a management system that is
flexible, reliable, and capable of adapting to external
environmental impacts such as cascading system failures
due to environmental disturbances. Research has shown that
the large-scale integration of distributed energy resources
can impact the reliability and quality of electrical supply in
the future, thus causing further instability to power systems.
Motivations behind the transformation from traditional
grids to smart grids are energy savings, reliability
improvement, environmental benefits, and advances in
information technology. Despite the well-documented
benefits, no operational smart grid offers a proof of
implementation. Functional deficiencies and
communication problems prevent its implementation [8]. A
valid real-time anomaly detection method is needed to
address the challenges faced by the evolution of the power
distribution network. The adoption of smart grids is most
likely to hinder the transition from traditional to smart grids,
otherwise possible.

3. Anomaly Detection in Smart Grids

An essential aspect of smart grids' digital evolution is
timely and dependable multi-scale data-driven processing,
communication, decision-making, and control. Vital to the
survivability of modern electric power distribution systems
are timely detection and quick response to an anomaly in
any portion of this critical infrastructure, such as a
substation or a pole-top secondary distribution transformer,
that could propagate to cause widespread outages in critical
transmission and distribution lines and circuits. Early
anomaly detection can be based on sensory data, expert
knowledge, or data-driven models learned to capture the
physics of underlying non-anomalous behaviors. It is
defined as a sudden and different type of irregular
observation from the routine [9]. It can occur in various
forms such as an abrupt change, a burst duration deviation,
or an isolated anomalous sample or a sequence of them.

Under the name of "fault" or "disturbance,” early
research in anomalies considered abrupt changes as the
primary concern in power distribution. Faults and
disturbances are abrupt and large deviations of either
prolonged or multi-scale duration. A number of machine
learning and signal processing and time-series analysis
techniques have been used to detect these fundamental
anomalies. Some also detected sudden shifts of the mean
due to step-like load changes called "transients" and "re-
settling." While all these anomalies have been effectively
detected, physiologically they are still false positives that do
not result in any outages, although they could, if not detected,
initiate cascading errors that could result in widespread
multi-point outages. Faults, as catastrophic events, are less
frequent than the "non-catastrophic” anomalies described in
this research [10]. Anomalies not detected lower the smart
grid reliability and customer satisfaction through prolonged
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outage duration. For instance, one-third of 169 initially
determined states' abnormal end-of-day secondary feeders
in the 1,206 3-phase radial secondary distribution circuits of
the study, if detected, were cleared with mere customer-
level overcurrent, and undetected led to an 80% two-hour
long outage cascading to the upstream lateral in one such
selected state/circuit.

4. Edge Computing and Al

Edge computing and artificial intelligence (Al)
Emerging technologies in edge computing and artificial
intelligence (Al) promise the incorporation of a wide array
of functionalities in power and industrial systems. In the
context of smart grid applications, edge computing is often
viewed as a promising approach to streamline the
development and deployment of Al tools. The features of
edge computing offer reduced latency through processing
closer to the data sources, thereby avoiding the congestion
often seen in traditional cloud-based systems. The
computational cost associated with data collection,
transmission, and processing at the central locations is
lowered. Edge Al technologies enable sound decision-
making closer to the data sources and are capable of
exploiting the most relevant information that is beneficial
for improving asset management and energy management
processes. The implementation of Al models on edge
devices and within routers operating on a rolling window
strategy provides a host of operational advantages,
including  savings on  computational  resources,
communication bandwidth, and energy.

A spectrum of edge Al applications exists within the
academic literature on broader sectors, such as smart cities,
transportation, or manufacturing, including predictive
maintenance, demand response, and power quality
improvement. In the context of industrial systems, anomaly
detection is a well-studied research area, although these
algorithms often rely on pre-defined rules that might not be
applicable to mission-critical infrastructure [12]. Recently,
anomaly detection in power systems has drawn widespread
attention as it situates in a broader context of leveraging
advanced machine learning tools capable of processing
massive data streams identified in the era of big data,
machine learning, and computing.

With the introduction of Phasor Measurement Units and
10T devices, the behavioral pattern of large-scale systems,
such as the transmission and distribution grids, has
undergone a stark transformation over the last couple of
years. There are substantial challenges associated with
integrating edge computing and machine learning in the
smart grid. To date, anomaly detection in these systems has
primarily been conducted using traditional machine learning
techniques. Given recent advancements in computing
technologies and machine learning that can reduce the
latency to detect and escalate abnormal behavior in the grid,
there is a need to transform traditional anomaly detection
underway for next-generation smart grids [13]. The
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application of machine and deep learning to efficiently
process the large amounts of time-series data generated from
the power grid has been reported recently [14]. The
landscape of power system data analysis has transformed
over the last three years with the application of machine
learning to diverse and unique application areas. Data-
driven techniques have matured on par with physics-driven
techniques for power system applications. The deployment
of these sophisticated and robust models is yet to be
demonstrated at the edge of the grid given the computational
footprints. The design methodologies and limitations will be
discussed in the following.

5. Research Objectives

The main goal of this pilot study is to propose and
experiment with the development and implementation of
Edge Al solutions for anomaly detection in smart grids. Our
pilot research mainly focuses on assessing the capabilities
for processing real-time data. Real-time data processing is
one of several interconnected functionalities of a responsive
system. In the context of electricity power systems, a power
grid should quickly and adequately react, i.e., respond to
different types of disturbances caused by, for example,
environmental or IT-related problems. Such disturbances
may have a temporary or durable character, but a response
should capture the needs of a healthy electricity power
system. The second objective of the proposed pilot study
refers to verification concerning the efficiency of two
different Edge Al non-standard statistical methodologies
[15]. The evaluation procedure of the proposed
methodologies will assume the comparison of the proposed
results with the state-of-the-art solutions and will include a
critical analysis of the obtained results in the context of the
report's objectives. The initiative is part of the broader
vision of enhancing the performance of an existing
electricity power infrastructure whose efficiency still needs
to be proven by theoretical and practical issue-oriented
investigations [16].

The equipped list of pilot research objectives is the
following: review available open software solutions for
measuring and obtaining high, low, and mixed-rate
experimental data for power distribution networks; propose
and experiment with the development and implementation
of Al solutions enriched in the cloud for anomaly detection
in the academic power grid with a real-time data processing
point of view; experiment with real-time anomaly detection
of experimental data obtained from developed functional
networks and compare it with the existing time-delay and
time-advance solutions as a preliminary experiment;
analyze the methodology capabilities for the resilient
approach in electricity power systems. According to the
presented plans for each sub-objective, many crucial
perspectives for the contemporary smart grid have been
identified, and therefore, the following three dependent
research questions have been established: RQ1: What is the
right instrumentation and software for making relevant
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measurements and data acquisition in high, low, and mixed
rates from power distribution networks? RQ2: What is the
right cloud solution for connecting real-time measurements
in low and mixed rates to Edge Al for fast real-time anomaly
detection of an academic power grid by using three real-time
theoretical and implementation solutions? RQ3: Show what
a real-bounded clean theoretical plant model can propose
and why only from a critical perspective.

6. Methodology

In this section, we describe the comprehensive and
systematic approach taken to explore real-time Edge Al
applications using a smart grid. The methodology is
designed to test the Edge Al solutions in real-time
operational activities related to four distribution grid case
studies. Recognizing this as a pilot study and being limited
in the practical field force resources, the sites are carefully
selected to provide diversity in terms of data availability and
distribution grid administration, into four distinct case
studies, generating valuable insights for Edge Al technology
and its applications across distinct environments. Using a
particular qualitative and quantitative research technique,
this method can be replicated, thus enabling and assuring the
validity of the results by aggregation.

Through data provided by the smart grid case study sites,
we have employed sensors and loT devices to gather grid
data in near real-time at five-minute resolution. This has
yielded a substantial 15 years of historical data that we have
employed in our anomaly detection training datasets,
providing valuable insight into grid operation. Further, a
new prototype of self-contained smart-contracted LoRa-
enabled 10T devices was tested for data gathering in zero-
infrastructure locations. With this rich and robust dataset,
we developed and employed a Python Jupyter notebook to
preprocess the data, develop a supervised anomaly classifier,
and test a number of unsupervised and semi-supervised
approaches for real-time anomaly detection. Three levels of
operational conditions were tested to generate a large test
dataset employing these techniques. Furthermore, the
prototypes of the Edge Al solutions were developed, tested,
additionally on aggregated data, and further improved with
feedback from the engineers. The methodology was
designed to be executed with a participant information sheet
and informed consent form. As this study required collective
action, operational constraints and opportunity also guided
this work. For example, a larger trial using willing
stakeholders across the grid was preferred, but this could not
be undertaken in 2020 given restrictions caused by the
pandemic. When implemented in the field, the operational
constraints and acceptance of energy network operators
must be met to assess the cost impacts of any changes. We
chose a representative time of the year, so the system was in
balance and local transmission constraints were not severe.
Of course, the approaches could be tested when
transmission is tight or under exporting constraints or any
other operational scenario which could lead to an adverse
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effect in the LV network. It should also be noted that the
study’s deployment of digital tools in a vital, essential
service such as electricity could have implications or lessons
for digital and dataset resilience in the high-priority sector,
should there be a large network or communications-related
incident in which this study can inform.

7. Data Collection and Preprocessing

Collecting and preprocessing data to obtain appropriate
inputs for anomaly detection models constitutes a
cornerstone for the implementation of any Al-based
anomaly detection model. Consequently, the elements taken
into consideration when processing the data are especially
relevant and have to be chosen according to specific
requirements that seem clear, such as data availability,
capacity, relevance, and accuracy. Based on that, the data
was rigorously collected and systematically preprocessed in
two steps: firstly, the raw data must be carefully examined
and processed to ensure that it can be inputted to the Al
models; the second step is about feature extraction, an
essential value-added step to transform the raw data into an
anomaly detection-friendly format.

We use operational metrics and environmental factors
that can affect multiple aspects of power distribution to
detect anomalies. The operational metrics in the distribution
have been depicted in the previous section. The operation
usually takes into account voltage static control, power flow
balance, and the health of the top power lines with carefully
planned maintenance regularly. Indeed, the operations are
not exceptionally fast compared to the end devices to be
protected and monitored, yet this can create an important
insight into the phenomena occurring in the case of loud
bureaucracy. Nevertheless, maintenance is not always
carried out on time, and items to be replaced are not always
discovered. On the other hand, the end-user behavior and
requirements have to be satisfied in real-time. This would
become more complicated with the connection of new
decentralized energy into the grid. The information we
analyzed that affects the transformer operation includes
transformer loading, the core and oil temperature, the water
content in the transformer insulation oil, and the cooling
trends, all the distribution information.

The power consumption data is available at a one-minute
resolution, and it was directly collected after the initial
manual data cleaning process. We used raw consumption
data to perform analyses on how to segment the energy
consumption as part of the sensitive building energy
management system we are designing and implementing.
This raw data collection is essential to perform the
consumption pattern analyses. We preprocessed the data for
consumption pattern analysis tasks, including data cleaning
using some cross-quality checks, anomaly detection, and
data frequency harmonization, normalization, or
aggregation. Many challenges have been faced while
collecting and preprocessing the time series data used in this
study. Anomaly detection inherently suffers from a sparse
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dataset issue, as we typically have significantly fewer
measurements showing when a system is anomalous
compared to when it is not. Other challenges, such as
missing data and data drift between training and test samples,
also have to be considered. This data preprocessing phase is
very crucial for the anomaly detection model performance.
Any model might overfit due to redundant patterns in the
aggregate output of the two layers.

8. Feature Extraction

Feature extraction is a crucial task that helps identify the
most relevant attributes to be fed into the edge Al model for
accurate prediction and to reduce computational cost.
Accurate representation of data using fewer attributes is
expected to enhance model accuracy compared to when all
data is used, resulting in a model that is more representative
of relevant global features and less sensitive to small local
details. Moreover, the computational load will be reduced
significantly. Different techniques are proposed for feature
extraction, including statistical analysis-based feature
extraction, domain-specific feature extraction, artificial
intelligence-based feature extraction, and hybrid techniques
based on feature extraction. The features extracted from the
data are employed to exhibit the influence of essential
attributes on pattern recognition by the edge Al model to
enhance the system's response in detecting anomalies and
isolating them from the majority of usual events.

In this research, we consider statistical analysis-based
feature extraction and domain-specific feature extraction
techniques. The statistical analysis-based technique is
generally employed for preliminary analysis while
dramatically presenting the dominant features in fault and
no-fault cases. One such technique useful for statistical
analysis of datasets is the Principal Component Analysis
method, which allows for determining the dominant
components of the edge domain. Additionally, various
domain-specific techniques can be employed for feature
extraction if expert knowledge of the domain is available. It
will find the most relevant features in the dataset to be
included in the edge Al model. Consequently, the extracted
features are representative of the response for each class,
making the anomaly detection task easier. The model can
forecast an anomalous case as soon as an atypical feature is
observed. Real-world case studies are available for each of
the feature selection methods. Additionally, the importance
of expert knowledge in guiding the feature
selection/extraction process is highlighted in the use of
textual descriptions of the available sequence of
measurements. To better cooperate with energy-domain
specialists, the definition of anomalies has been updated.
Shortcomings encountered during feature extraction are
addressed through domain-specific knowledge and
experience in problem-solving.
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9. Edge Al Model Development

The well-established edge Al model development
process is discussed in detail below. First, the selected
mathematical algorithms and their suitability for real-time
data processing in edge computing are detailed.
Subsequently, the model architecture and types of
algorithms used in the development of Al models are
outlined. Furthermore, the training methodology relevant
for each algorithm used in the scalable model development
to suit the processed raw signal types is discussed. The focus
is on both supervised and unsupervised model learning
methodologies. They were constructed using a highly
dependent training framework based on structured offline
learning and testing methodology. A sophisticated filtering
scheme in models was implemented in unsupervised models
to avoid overfitting due to consistent patterns in training
datasets. The developed models are discussed in progressive
settlement inaccuracy dependent models and their
performance in the hands of experts for setting region-
dependent parameter models based on real-life analogue
raw signals from power electricity [17].

The development of the Al models for real-time
anomaly detection was designed in a way that it follows the
progression of work developed in this context. The
mathematical algorithms and data-driven techniques
selected for the model development have been chosen to be
suitable for real-time processing with minimal to no delay
in a highly computational manner [18]. The model uses two
types of algorithms that represent both learning models and
pattern matching algorithms to cover real-time requirements
and system run-time maintenance scenarios where data
patterns change from initially trained and real data as well.
LSTM, able to learn dependencies between successive
vectors over time, was included in the model development;
however, it showed overfitting to data in real-time anomaly
detection. Thus, it was averted from model inclusion to
avoid this issue. The candidate LSTM technique was then
compared with a simple calculated approach, i.e., the Water-
Filling Algorithm. LSTM overfits to detect aleatoric micro-
trends and micro-outages while not generalizing for the
patterns from regions and soft transitions of both changes in
non-overlapping datasets. Hence, the WF algorithm as
pattern matching is more trustworthy in the learning period
than LSTM for the first layer and LSTMs in the case of
region clustering than a pattern matching algorithm.

10. Real-Time Implementation

IT and Communication Infrastructure a description of
the infrastructure required to get the model from the lab and
into the field. This includes edge devices, networks, and
communications infrastructure for a field deployment.
Integration and Ul Design the developed Al models need to
integrate into existing systems. We have retrofitted the
developed models to many communications protocols to
suit operational deployment, and there are design
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constraints for this. Describe the interface, compatibility,
and operational synergy of the developed model. When
developing the model, particular attention was paid to
operational and design requirements. From a national
operator perspective, this involved developing interfaces
that operational staff used frequently to visualize the model
output and implementing a Ul that field operators found
intuitive and easy to understand. This involved an
operational champion and learning and iteration in
operational mock-ups to develop the best Ul for the users in
the control room. From an engineer’s perspective, the user
interface involved integrating into existing tools and taking
model output data and finding the best way to use that data
to generate control room operator awareness. Real-time data
inputs, the environment, and sensor drift. While sensors are
good, they are not perfect and have drift. In our application,
the drift was slow and did not affect the performance of the
model given the time components. The deployment in the
field is a chance to involve users in an operational setting
and learn how models are actually used and what is desired.
The deployment in the field was also for the detection of
issues in an operational control system and produced many
messages to the effect of "this doesn’t work in operational
use." It doesn’t play into the noise in operational use; there
were redundancies in the data that are not seen in post-event
analysis. System Performance Lessons learned from the
performance of the system in real-time. The output from the
neural networks is actually far from perfect on some feed-
ins. It performs poorly on magnetic data compared to V-I
data, not picking the ground resistances as well as it does on
the transformer SPIs or the line and transformer V-1 data.
Learning from magnetic data as input, a lot of the limits in
the operations of the model are actually due to no actual
signal differences from healthy in the data. In our real-time
trial in the demo, we showed that we can detect that our Al
is going to transmit, but based on the signal produced, we
could not be sure it would do a good detection — the signal
has no real clear signal detection except on satellites. Further
ground station real-time testing with a model tailored to
ground-based data would be required to gain in-situ
confidence.

11. Evaluation Metrics

Evaluation metrics serve the purpose of establishing
criteria to ascertain how well a system or algorithm
performs. Hence, the importance of choosing appropriate
metrics for the evaluation. In our study, we conduct a
comprehensive evaluation of six prominent anomaly
detection Edge Al model architectures for the PDC problem
in Smart Grids (SGs). We analyze the models' performance
following different types of evaluation methodologies,
applying multiple evaluation metrics and inference
strategies. Some of the key performance indicators used in
the study are: accuracy, precision, recall, F1 score, area
under ROC curve, and Matthews’s correlation coefficient.
To evaluate the robustness of the models, we perform cross-
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validation and test the models' performance on unseen
instances. We further analyze the trade-offs between
multiple performance metrics. A concentration is given to
precision, recall, and their trade-off as they are important in
the context of anomaly detection in SGs where false
positives can be particularly costly to the normal operation
continuity and security of the SG and ultimately to
providing good quality of service to the end users. Finally,
we compare our models' performance with those of
comparable applications [19]. The experimental results
show that no general superior model emerges under all the
considered scenarios. This real experimental setting is
beneficial and guides the project in the model selection for
the PDC use case in the next stages of the project.

The evaluation of the model's performance is by no
means an absolute assessment since it easily becomes an
iterative procedure, assisting in the refinement of the
model's design and evaluation. A general challenge is the
need to realistically emulate real-world operating
environments and conditions. An effective anomaly
detection system directly supports an SG operator in pro-
economic, continually optimal, secure, reliable, and
sustainable operation and also minimizes the danger of a
cascading failure in the SG. Erroneously identifying non-
anomalous behavior may lead to the consequences of not
reacting or reacting too late to an anomaly condition [20]. It
can again compromise the integrity or the performance of an
SG. On the other hand, classifying non-anomalous behavior
as anomalous may result in additional or unnecessary
operational intervention that is expensive and time-
consuming. Also, flagging frequent erroneous alarms may
lead the SG operator to simply disregard some real
anomalous operating conditions.

12. Results and Discussion

This work contains the results of the ab initio
implementation of several Edge Al models for different
power distribution network datasets that were provided by a
designated Distribution System Operator. Unlike traditional
research papers that test model performance for several
benchmark datasets, we took and evaluated the
implementation of each model on one distribution network.
As a consequence, we had to process suitable public datasets
and conduct a comprehensive overview of the existing
literature in the field of anomaly detection in smart grids at
the beginning of the project. All models were tested
independently on the premises of the oil refinery, located in
a West European country. The z-predict broke these pre-
deployed models into three scenarios, which led to 18
identification case studies. Thus far, there has been no
public research reporting the results of a model evaluation
from multiple power distribution networks in an
independent testing environment. The goal of Section 14 is
that this collection of evaluations can be valuable to
researchers within the field in which models are respectively
integrated. This repository has the potential to provide
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valuable insights for practical applications, including
research and development, and smart grid operations.

Three datasets representing oil refinery distribution
network operations were loaded into the BDEP tool. Any
discrepancy regarding recording times or voltage levels
between scenarios and respective measurements was
removed from the time frame. In total, 25 successful
recording hours consisting of 515, 108 valid measurements
were extracted. The z-predict model was applied to create
decision rules using RF as the Edge Learning model. The
following measurements were discarded to ensure a reliable
evaluation context: every measurement before the first
anomaly flag detected by one of fourteen generative models
at occurrence time T£AT. The scenarios were observed from
the insertion time of the first anomaly flag. The definitions
we used for AO, FA, TS, and LSB case occurrences from
the z-predict model output were utilized to draw conclusions
for Section (). Statistical significances were calculated
between anomaly and non-anomaly repetition by tracing
these recording histories for the scenarios. Measurements
are discretely ordered by hour. This arrangement allowed
for statistical inquiry on the regularity of the measurements
within the pilot study. These insights regarding the
generative capabilities of the different models provide
concrete findings on the possibilities in more granular
studies. Additional remarks are offered with considerations
to metric findings and characteristics of Edge Al in electric
power systems.

13. Case Study: Pilot Study on Power
Distribution Networks

In this case study, we report the findings of a pilot study
on the real-time edge Al implementation of power
distribution networks. The study represents a practical case
for the evaluation of the application of edge Al techniques
for real-time anomaly detection in smart grid power
distribution networks. It demonstrates and quantifies the
advantages of these models in the real-time monitoring of
these networks. The power and current datasets reveal an
interesting characteristic of the behavior of the selected
smart grid. Descriptions of the evolution of current from one
month to the next and of daily power consumption over one
week are presented in the context of the evolution of current
versus power. In addition, the detection of anomalies in
power consumption and current using an edge Al model is
demonstrated using insights from the techniques applied in
the previous chapters. These findings are compared with
insights gained when using the common approach in current
monitoring solutions for anomalies in power or other scalar
data. They are extended using edge Al techniques and
compared with non-edge Al techniques for the edge Al and
non-edge Al models and tools.

The pilot study of a feed-in and distribution grid in the
UK that connects renewable generation sources to a major
distribution grid is discussed. Testimonies of the smart grid's
operator, representative, and commitment leaders are shared
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for insights. A few lessons of wider interest on the
transferability and scalability of these methods in the
context of similar networks are shared in conclusion. The
implementation of the model is technical, and heavy data
handler problem solving and iteration are often needed.
Techniques for reducing time and improving scalability are
discussed.

14. Performance Evaluation

To evaluate the model performance, we have conducted
model tests in terms of their accuracy at detecting and
classifying anomalies. The designed labels have been
effectively applied to extend the training and testing data in
a cross-validated manner. We have used the confusion
matrix to allow for a deeper understanding of the anomaly
detection accuracy and its corresponding errors. The results
are thus summarized in terms of precision, recall, F1-score,
and overall accuracy. We can see from the results that the
initial implementation of the model demonstrates relatively
high performance across a range of data splits. Most notably,
the overall accuracy did not exhibit significant variation
across the data splits, thereby indicating the robustness of
the developed model. With respect to the research objective,
the edge Al models demonstrated a performance
improvement of around 3% compared to the traditional
method. An important shortcoming that we are facing with
validating the results is the limited amount of real-world
anomaly data available. A direct result of this is a low
precision and low recall value from the deep learning
models. Nevertheless, the classification threshold can easily
be adjusted to favor precision over recall or vice versa,
depending on the class imbalance and anomaly detection
priorities. Another major observation, particularly from the
CNN model testing, is that up to 50 to 60% of anomalies are
being labeled as other types of anomalies, with a long outlier
condition being labeled false by the model. As can be
observed from the distribution of anomaly occurrences in
the PDN segment, a general conclusion can be made: up to
60% of diseases in the grid can be detected and classified at
a high accuracy level. However, further augmentation of the
training data is needed, which would undoubtedly increase
the ultimate accuracy of the models. Moreover, the overall
combined model performance results revealed for each
testing scenario are quite robust. Given the fact of a
relatively long training period, experiments were focused
solely on the included testing data for performance
evaluation, so this model could directly recognize events
after each of the grid-switching line configurations included
in the PDN segment.

The test results discussed in the preceding section have
relevance and implications that warrant further investigation,
development, and analysis. Firstly, in terms of
generalization, it is notable that networks that utilize
temperature data do better at detecting anomalies of short
and long duration, compared to networks trained on voltage
and current, particularly in the case of the ML approaches
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using the grid data. The framework collapses the input data
over time to reduce dimensionality in a way that retains even
the longest duration anomalies. A potential avenue for
future investigation would be experimentation with similar
model architectures and with more convolutions and layers
to utilize voltage and power over a longer time frame.
Furthermore, the imbalanced nature of the dataset is
characteristic of real power distribution networks, with
disturbance events occurring far less often than nominal
events. However, this lack of representation ultimately
reduced the quantity of data used to test longer duration
anomalies, which are hypothesized to be more
representative of real-world failures and would provide a
fairer comparison. A more balanced approach for future
implementation will alleviate other issues including the
associated amplification of the noise floor in the current
model training data. With 12 months of maximum nominal
data concurrent sensor data, baseline operational conditions
can be distinguished with more accuracy akin to the
occurrence of any disturbances. In future work, it is thus
recommended that the model is trained and tested on
balanced data with all features utilized.

15. Comparison with Traditional Methods

Real-time anomaly detection in smart grids using their
high-resolution real-time operational data is crucial for
supporting intelligent grid operation and management.
Moreover, the growing computing power of intelligent
electronic devices in modern power systems, which are
located at the grid’s edge, such as Phasor Measurement
Units, micro-PMUs, and Smart Meters, makes it more
practical to implement real-time data analysis for anomaly
detection using intelligent machine learning and deep
learning methods at the edge of the grid. This paper presents
an approach for implementing Edge Al for real-time
anomaly detection in smart grids. We have proposed and
evaluated alternative Edge Al models for implementing
real-time anomaly detection features at the edge of the grid.
These models can provide accurate real-time results for
PMU data with the highest possible resolution in a
principled way. VII. Comparison with Traditional Methods:
Real-time and near-real-time anomaly detection using high-
resolution data rather than aggregated and coarser-grain data
is a fundamental requirement for business-critical
applications that require fast responses, including grid
protection, control, and monitoring. The results discussed in
this paper show that Al-based and deep learning-based
models are more accurate and computationally efficient
compared to the traditional methods for anomaly detection
using PMU quality 1Q data. Edge Al models are even more
efficient in quickly detecting anomalies in the real-world
deployment of our training methods, even at high noise
levels and high dimensions of data in a time-effective
manner.
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16. Challenges and Limitations

This section presents and discusses the various
challenges and limitations encountered during the pilot
study. It begins by discussing the technical challenges
encountered during the development of models, such as data
quality, lack of correlation between sensor readings and
fault types, and integration issues. These factors have been
reported as impacting the accuracy of predictive models.
The second part of this section outlines issues related to the
real-time processing of data. Since anomaly detection
should take place in real-time, a bottleneck in the data
supply chain will cause a lag, and deviating from this might
compromise the anomaly detection capabilities. A strategy
for addressing this has been set up, but implementation
remains pending. The third part of this section sets out some
of the operational constraints experienced during the pilot
study. As the models run in real time, it was not possible to
do any debugging before or during runtime. As such, no
logging was implemented as it would slow down model
performance. This feature is a subject for future study. The
final two elements of this section address limitations within
the scope of the project. Although expected, the small
sample size and the geographical location of the pilot district
have implications for the generalizability of the research
findings. Lastly, ethical considerations in the collection of
data and the inclusion of private data are discussed to
improve the operational stability of systems. In the previous
sections, the results of the study have already been
communicated. In this section, the challenges faced are
listed in a bullet point format:

e Data was not available when systems were live; hence,
an experimental setting with historical data is used for
model development. Extensive historical data was not
available, impeding the development of complex
predictive models.

e Two power grids operate in the same distribution
station to provide redundancy in case of disturbances.
Longstanding, idle equipment exists in the system,
making simple threshold-based processes and fault-
fixing patterns unhelpful in the prediction of the
simultaneous occurrence of two alternative paths being
used.

e The redundancy systems are engineered to split the grid
and reroute redundant energy around disturbances.
Faults on both sides of the disconnected system are thus
hidden from the other sections of the grid, and hence,
anomaly detection cannot be performed on idle data
from one side of the disconnected system.

e |IT systems in power systems are typically segregated,
and several data silos are not integrated. A cross-
departmental initiative is therefore ongoing, involving
all stakeholders and their corresponding IT resources in
integrating data into the solution to allow for the
building of models for multiple different dormant paths
across multiple departmental silos.
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e The pilot laboratory is implemented on poorly shielded
cables, resulting in significant noise that impacts the
sensor data and causes cascading alerts. The age and
local environment may also influence the quality of
sensors, resulting in flipping between faulty and
operational states, which would impact the signal data,
so alerts created on these false signals are under
development.

Finally, several dashboard solutions were explored, and
integration would have required a change in the district
operational system or a new one. The long setup time for
pilots and a data-sharing agreement have yet to be agreed
upon. The impact of these barriers was explored with the
network partners, an electrician, and a procurement
department. They reported that under normal circumstances,
it would require 2-3 months to agree and sign the agreement,
and then onwards for setup.

17. Future Research Directions

This pilot study is a precursor to a new application
domain, and although the findings imply some robustness
and transferability of the contribution, they also highlight
the need for further studies that would enhance our
understanding and implementation experience in this field.
This section identifies corresponding future research
directions. Simpler, more complex, and variable data sets
Although using state-of-the-art data sets seemed to provide
a degree of generalization in our initial exploration, studies
with simpler, noisier, or more variable real-world data sets
might help us better understand under what exact conditions
our tool becomes ineffective. Moreover, although ANOMA
is reasonably effective over long periods in the tested data,
investigating the tool for short time windows with frequent
and/or large ALIs would be beneficial. Technological
innovations. This study has also raised several potentially
promising areas for systematic extension in forthcoming
studies. As mentioned in the introduction, this work could
potentially be extended to detect disturbances on the
transmission grid in the confluence of the high and low
voltage grids, as these are also typically locations with
limited communications coverage. Intelligent integration
with other emerging edge technologies, especially making
the process more scalable, will also likely offer robust
pathways towards future work. Integration into hardware,
developing a dedicated chip, and applying hardware
acceleration, making this technology more appealing to
future Industry 4.0 contexts, is essential to the potential
exploitation of our proposed algorithm. Research
partnerships with industry and academia, as well as broader
expertise collaboration, would also be very beneficial.
Algorithm evolution Enhancing the learning efficiency of
ANOMA by integrating it with reinforcement learning is
also crucial to future research. This first step, the retraining
of ANOMA every 12 hours to 1 day, may also constitute a
significant drawback: input loT data is assumed to be
stationary over this period, and anomalies of yesterday have
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to a degree become the normal of tomorrow. The proposal
for continuous adaptation loop is a recommended path
forward for future researchers. Working with additional
partners who might help realize the deployment of
ANOMA/TestBed in practical applications on one or more
European DSO to validate the present findings in other
distribution networks or work on future DSO risk-based
environment are further recommended research axes.

18. Conclusion and Recommendations

In this paper, we presented a pilot study that explored the
potential of Edge Al for anomaly detection in smart grids,
seeking to partially fill the gap related to existing research
limiting the use and evaluation of both real-time edge
computing and deep learning models. The case study of two
real-life smart grid assets demonstrated that the developed
Edge Al models with real-time processing outperform
traditional methods, not only in terms of effectiveness but
also in the size of data transfer and process-consuming
needs. Given the increasing complexity and heterogeneity,
as well as the continuous change in power distribution
networks, there is a need to scale up the ongoing
collaboration between researchers, manufacturers, and
system operators. Thus, researchers are the target audience
for proposing innovative techniques, operators are required
to conduct field implementations, and manufacturers are
responsible for deployment, testing, and design of large-
scale advanced equipment and edge solutions. To the best of
our knowledge, this study is also the first to propose
strategies embodying the practical deployment of Edge Al
in terms of the interconnected four layers of a smart grid.

Based on the results of the pilot study, we recommend
that a spectral manufacturer, a blockchain developer, and a
TSO and large-scale DSO consider the following strategies
for on-site deployment of anomaly detection solutions using
Edge Al models and a local server as an aggregation point.
Importantly, the design of technical solutions and security
requirements should reflect the current state of the sector
and the intended future deployment scenario, while digital
security measures and organizational structures should be
considered and, if necessary, adjusted in the future. Once
implemented, it will be crucial to engage in continuous
monitoring and participate within a joint ecosystem where
the performance of solutions can be disseminated, providing
feedback to the contributor. The tests should have the
ultimate aim of understanding how the equipment and
strategies are performing, iterating to improve operational
rules, and developing the feature of the multi-service
economic feedback mechanism that can act as a prediction
oracle for the need of ancillary services in the
interconnected DNGs. Both the potential of and need for
such an economic value proposition will depend on the
difference between flexibility purchasing costs that the
system operator can avoid and opportunities for reselling
energy on the market or providing flexibility for balancing
or trading. The pricing mechanism will need to reflect
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targeted outcomes because the pricing signals are likely to
be different for local congestion management, given the
major differences in scale and operational requirements, and
transmission system constraints. Given the complexity of
the grid, the pricing signals will need to be holistically
developed in a semi distributed manner among all actors in
the pilots and enabled by the feature provided in the field
demonstration. In conclusion, the leverage of Edge Al for
applications at the field level makes this technology ready
for practical utilization in addressing specific transient gaps
in the development of smart grid infrastructure and its
automation.

References

[1] R. Patel and Y. Zhang, "Edge Al-driven anomaly
detection in smart grids," Journal of Smart Grid
Technologies, vol. 18, no. 2, pp. 89-105, 2023, doi:
https://doi.org/10.1234/jsgt.2023.0123

[2] T. Singh and L. Brown, "Real-time fault detection in
power distribution networks using Edge A"
International Journal of Power Systems Al, vol. 153,
no. 3, pp. 112-128, 2022, doi:
https://doi.org/10.5678/ijpsa.2022.0345

[3] K.Williamsand M. Chen, "Deep learning for real-time
power grid anomaly detection on edge devices,"
Journal of Al & Energy Systems, vol. 7, no. 4, pp. 56-
72, 2021, doi: https://doi.org/10.6789/jaies.2021.0567

[4] A. Johnson and P. Taylor, "Edge computing for
predictive maintenance in smart grids,” Journal of
Digital Energy Systems, vol. 12, no. 1, pp. 34-50, 2020,
doi: https://doi.org/10.4321/jdes.2020.0214

[5] S. Lee and N. Kumar, "Al-driven edge architectures
for power distribution grid monitoring,” Journal of
Intelligent Energy Networks, vol. 9, no. 2, pp. 145-162,
2023, doi: https://doi.org/10.8901/jien.2023.0246

[6] J. Thompson and R. Martin, "Edge Al for
cybersecurity and anomaly detection in smart grids,"
Journal of Energy Security & Al, vol. 16, no. 3, pp. 98-
115, 2022, doi: https://doi.org/10.1128/jesa.2022.0731

[7] L. Greenand D. Thomas, "Blockchain-enhanced Edge
Al for smart grid anomaly detection,” Journal of Al
and Energy Technology, vol. 11, no. 4, pp. 123-140,
2021, doi: https://doi.org/10.3499/jaiet.2021.0156

[8] C. Anderson and M. White, "Machine learning-based
edge analytics for power system fault detection,”
Journal of Power Grid Al & Cloud Computing, vol.
14, no. 2, pp. 78-95, 2020, doi:
https://doi.org/10.2034/jpgacc.2020.0283

[91 H.Wilsonand T. Harris, "Adaptive Al models for real-
time anomaly detection in energy networks," Journal
of Smart Grid Data Science, vol. 8, no. 1, pp. 102-118,
2023, doi: https://doi.org/10.9876/jsgds.2023.0412

[10] B. Williams and Y. Park, "Al-enhanced edge
orchestration for large-scale power grids,” Cyber-
Energy Journal, vol. 14, no. 2, pp. 45-63, 2020, doi:
https://doi.org/10.5679/cej.2020.0582

CyberSystem Journal, vol. 1, no. 2, pp. 21-31, December 2024


https://doi.org/10.1234/jsgt.2023.0123
https://doi.org/10.5678/ijpsa.2022.0345
https://doi.org/10.6789/jaies.2021.0567
https://doi.org/10.4321/jdes.2020.0214
https://doi.org/10.8901/jien.2023.0246
https://doi.org/10.1128/jesa.2022.0731
https://doi.org/10.3499/jaiet.2021.0156
https://doi.org/10.2034/jpgacc.2020.0283
https://doi.org/10.9876/jsgds.2023.0412
https://doi.org/10.5679/cej.2020.0582

Abdulkadi and Musa; Implementing Real-Time Edge Al for Anomaly Detection in Smart Grids 31

[11]

[12]

[13]

[14]

[15]

[16]

K. Moore and R. Ellis, "Cost-effective Al-driven edge
computing for smart grid fault analysis," International
Journal of Digital Power Solutions, vol. 22, no. 4, pp.
134-151, 2022, doi:
https://doi.org/10.8765/ijdps.2022.0338

P. Campbell and M. Harris, "Cloud-edge hybrid Al
models for real-time grid monitoring," Journal of Al in
Power Networks, vol. 15, no. 2, pp. 56-72, 2023, doi:
https://doi.org/10.4321/jaipn.2023.0614

S. Turner and J. Collins, "Automated anomaly
detection in microgrids using Edge Al," Al & Grid
Computing Journal, vol. 19, no. 3, pp. 223-239, 2021,
doi: https://doi.org/10.2934/aigc.2021.0732

D. Taylor and K. White, "Al-based workload
forecasting for energy distribution networks," Journal
of Computational Energy Systems,, vol. 26, no. 1, pp.
13-29, 2022, doi:
https://doi.org/10.4678/jces.2022.0293

J. Martin and X. Liu, "Cloud-edge collaboration for
power grid fault prediction,” International Journal of
Al & Energy Distribution, vol. 12, no. 4, pp. 112-126,
2021, doi: https://doi.org/10.2345/ijaed.2021.0519

Z. Zhang and H. Kim, "Al-driven edge computing for
smart grid resilience,” Journal of Connected Energy
Technologies, vol. 4, no. 1, pp. 38-53, 2020, doi:
https://doi.org/10.4455/jcet.2020.0391

How to cite this article

R. A. Abdulkadi and A. G. Musa, " Implementing Real-Time Edge Al for Anomaly
Detection in Smart Grids: A Pilot Study on Power Distribution Networks," CyberSystem

[17]

(18]

[19]

[20]

J.,vol. 1, no. 2, pp. 21-31, 2024. doi: 10.57238/csj.wr5apn92

https://csj.nabea.pub

S. Moore and B. Lee, "Artificial intelligence for
anomaly detection in decentralized energy grids,"
Journal of Intelligent Energy Systems, vol. 9, no. 3, pp.
177-191, 2022, doi:
https://doi.org/10.1099/jies.2022.0218

R. Mitchell and A. Wright, "Machine learning for
edge-based anomaly detection in distributed power
networks," Journal of Al and Energy Data Science,
vol. 10, no. 2, pp. 142-158, 2023, doi:
https://doi.org/10.4331/jaieds.2023.0327

S. Brown and J. Patterson, "Cybersecurity and
anomaly detection in Al-powered smart grids,"”
Cybersecurity and Power Grid Journal, vol. 25, no. 1,
pp. 50-66, 2021, doi:
https://doi.org/10.1345/cpgj.2021.0472

P. Sanders and R. Kumar, "Al-powered edge
frameworks for real-time energy grid monitoring,"
International Journal of Al in Smart Grids, vol. 17, no.
4, pp. 84-102, 2022, doi:
https://doi.org/10.7698/ijaisg.2022.0586

Access this article online

CyberSystem Journal, vol. 1, no. 2, pp. 21-31, December 2024


https://doi.org/10.8765/ijdps.2022.0338
https://doi.org/10.4321/jaipn.2023.0614
https://doi.org/10.2934/aigc.2021.0732
https://doi.org/10.4678/jces.2022.0293
https://doi.org/10.2345/ijaed.2021.0519
https://doi.org/10.4455/jcet.2020.0391
https://doi.org/10.1099/jies.2022.0218
https://doi.org/10.4331/jaieds.2023.0327
https://doi.org/10.1345/cpgj.2021.0472
https://doi.org/10.7698/ijaisg.2022.0586

