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 Abstract: In this pilot study, we aim to establish the changes needed to investigate whether 

edge AI can lead to real-time anomaly detection in the grid. In designing anomaly detection 

techniques, numerous other AI techniques such as artificial neural networks, among many 

others, have been investigated in previous works. However, only a few investigate their use 

for real-time anomaly detection in power systems. This pilot research looks into the 

possibility of developing a real-time anomaly detection methodology for smart grids. A part 

of this is casting the anomaly detection algorithm in a way it can be deployed on the edge. 

This section aims to review a literature survey that contains all the methods and algorithms 

used in the anomaly detection process. The section starts by addressing the need for the 

intervention of anomaly detection systems to mitigate the risk of attacks. Then the survey 

presents the well-established methods of anomaly detection. The last part of this section 

will review the previous attempt of moving anomaly detection to the edge of networks. In-

depth details of each algorithm will be presented in the next section. 
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1. Introduction 

ITH the swift progression toward a digital electric 

power network, the electricity distribution segment 

is facing increased demand for localized solutions 

to drive operational efficiency, security, reliability, 

and economic viability. Edge computing technology can 

play a crucial role in processing in real time vast quantities 

of data gathered from the distribution network that are 

impractical to send to the centralized level, while preventing 

a huge amount of data from being stored in the 

communication network layer that is both a risk and costly. 

Additionally, real-time analytics performed on edge 

computing allow for immediate responses to instantaneous 

grid events and conditions. This paper focuses on real-time 

edge AI in anomaly detection within the electrical meter-

sensing resources, as they present potential points of 

weakness to the smart grid network. Specifically, the paper 

discusses the potential utility and the innovative 

contribution of a pilot study of a sparsely populated rural 

network. Here, the main objectives are to explore the 

challenge, answer the questions, test our new solution, and 

evaluate its suitability for furthering smart grid technologies 

[1]. 

At present, electrical networks are monitored through an 

acquisition system that uses control outputs on SCADA, 

Remote Terminal Units, or Programmable Logic 

Controllers. In this architecture, data from the metering 

devices are used as secondary sources of monitoring and 

analysis. Traditional monitoring systems are facing several 

critical issues such as a lack of direct real-time acquisitions, 

data in standby or only recorded at regular time periods, and 

selected/averaged input/output at the final level. For this 
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reason, many important events, even if recorded in a 

historical data logger, are just never properly identified. 

Even when they are, the information arrives after it has 

already happened. Consequently, this makes it difficult for 

engineers and managers to properly validate persistent 

issues. The paper's focus is to address the challenge of 

leveraging real-time edge AI to perform localized and 

immediate identification of emerging issues within 

residential and small business distribution networks. This 

paper discusses the performed literature review and 

introduces a novel approach which is presented in this 

section [2]. Following this, the section Problem Statement 

and Objective frames the main research issues. The final 

section is an outline of the paper. In summary, the 

contributions of this paper are the results of the pilot study, 

and we introduce a foundational concept. In the following 

sections, we will answer the question left open in the 

literature: which machine-learning-based techniques are 

better suited for anomaly detection powered by edge 

computing. Smart grids, also known as intelligent or 

adaptive power grids, are the next generation of traditional 

power grids that have been revolutionized by the integration 

of state-of-the-art technology. They not only offer power 

flow among resources within the grid, but also can gather 

and distribute real-time data which can assist the grid 

operators in comprehending grid behavior encompassing 

demand-supply dynamics [3]. The achievement of a power 

grid, however, entirely depends on the precise allocation of 

the needed energy to the required location. Additionally, 

small lazy allocation of adoption makes the grid more 

beneficial for customers. Thus, one of the primary 

objectives of power transmission and distribution is to make 

it as efficient as possible. In the smart grid framework, the 

flow of power from the grid to the end-users, i.e., the load 

in a fraction of time can reduce the physical damage to the 

assets of the power distributors [4]. 

Nowadays, energy demands fluctuate frequently 

depending on user satisfaction. This initiative demands that 

the power grid be saliently adaptive to shifts in demands. In 

several recent literature, it has been expressed that AI can be 

productively integrated for the management of the 

operations of smart grid systems by ensuring reliable, stable, 

and optimized responses to consumers at all times. However, 

AI is presumed by the existing power systems to enhance 

grid operations without much focus on data intensity, i.e., 

performing real-time big data analytics. From the studies of 

the literature, it is found that there is no big battery available 

right now to store the data and process that data in the grid 

and AI at the same time, where the volume of data is 

increasing rapidly, which impels us to investigate anomaly 

detection techniques in the upstream domain of data 

processing in the data network, i.e., on the edge. By 

assimilating AI with real-time big data analytics of the smart 

grid, it can offer countless improvements including the 

integration of more demand-side management resources. 

Hence, to accomplish the above-specified operation, an AI 

function known as 'anomaly detection' is to be integrated 

with the data with negligible implementation expenses. 

Furthermore, for the time commitment, this AI-integrated 

data can be regarded as more than conventional data 

solutions. A duo-integrated AI anomaly detection platform 

can facilitate the efficient operations of the power system 

and can ensure seamless solutions to fossil-fuel dependent 

utilities and prosumers [5]. The electricity grid is becoming 

smarter with various modern functionalities and advanced 

capabilities. Many previous works have addressed many 

details of smart grids. Power systems and the electric grid 

have unique characteristics that must be considered when 

designing anomaly detection methods. In designing 

anomaly detection techniques, environmental parameters 

and key performance indicators are unique nominal 

parameters that require particular attention. Consequently, 

the application of anomaly detection techniques for smart 

grids and power systems has been studied as well. However, 

only a few applications are designed to work in real-time 

due to edge computing [6]. The present paper aims to 

explore the possibility of implementing AI algorithms at the 

edge level for real-time anomaly detection in power grids. 

We propose a methodology for developing a real-time 

processing module by integrating AI and edge computation. 

 

 
Figure 1.   Edge computing architecture [6] 

2. Smart Grids and Power Distribution 
Networks 

A smart grid is seen not only as the next-generation 

distribution network, but also as a parallel effort to advance 

the evolution of power distribution networks and fully 

extend them into the digital age. It has local and global 

optimization algorithms and communication systems, such 

as supervisory control and data acquisition and an advanced 

metering infrastructure. Most importantly, it consists of a 

large number of high-resolution, fast-responding, and two-

way instantaneous measurements to implement real-time 

analysis of the power systems and support power system 

applications. The application functions include distortion 

detection, low-voltage control, self-healing capabilities, 
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estimated state-of-the-art, and load diversion [7]. The 

increasing technological complexity of the power 

distribution network calls for a management system that is 

flexible, reliable, and capable of adapting to external 

environmental impacts such as cascading system failures 

due to environmental disturbances. Research has shown that 

the large-scale integration of distributed energy resources 

can impact the reliability and quality of electrical supply in 

the future, thus causing further instability to power systems. 

Motivations behind the transformation from traditional 

grids to smart grids are energy savings, reliability 

improvement, environmental benefits, and advances in 

information technology. Despite the well-documented 

benefits, no operational smart grid offers a proof of 

implementation. Functional deficiencies and 

communication problems prevent its implementation [8]. A 

valid real-time anomaly detection method is needed to 

address the challenges faced by the evolution of the power 

distribution network. The adoption of smart grids is most 

likely to hinder the transition from traditional to smart grids, 

otherwise possible. 

3. Anomaly Detection in Smart Grids 

An essential aspect of smart grids' digital evolution is 

timely and dependable multi-scale data-driven processing, 

communication, decision-making, and control. Vital to the 

survivability of modern electric power distribution systems 

are timely detection and quick response to an anomaly in 

any portion of this critical infrastructure, such as a 

substation or a pole-top secondary distribution transformer, 

that could propagate to cause widespread outages in critical 

transmission and distribution lines and circuits. Early 

anomaly detection can be based on sensory data, expert 

knowledge, or data-driven models learned to capture the 

physics of underlying non-anomalous behaviors. It is 

defined as a sudden and different type of irregular 

observation from the routine [9]. It can occur in various 

forms such as an abrupt change, a burst duration deviation, 

or an isolated anomalous sample or a sequence of them. 

Under the name of "fault" or "disturbance," early 

research in anomalies considered abrupt changes as the 

primary concern in power distribution. Faults and 

disturbances are abrupt and large deviations of either 

prolonged or multi-scale duration. A number of machine 

learning and signal processing and time-series analysis 

techniques have been used to detect these fundamental 

anomalies. Some also detected sudden shifts of the mean 

due to step-like load changes called "transients" and "re-

settling." While all these anomalies have been effectively 

detected, physiologically they are still false positives that do 

not result in any outages, although they could, if not detected, 

initiate cascading errors that could result in widespread 

multi-point outages. Faults, as catastrophic events, are less 

frequent than the "non-catastrophic" anomalies described in 

this research [10]. Anomalies not detected lower the smart 

grid reliability and customer satisfaction through prolonged 

outage duration. For instance, one-third of 169 initially 

determined states' abnormal end-of-day secondary feeders 

in the 1,206 3-phase radial secondary distribution circuits of 

the study, if detected, were cleared with mere customer-

level overcurrent, and undetected led to an 80% two-hour 

long outage cascading to the upstream lateral in one such 

selected state/circuit. 

4. Edge Computing and AI 

Edge computing and artificial intelligence (AI) 

Emerging technologies in edge computing and artificial 

intelligence (AI) promise the incorporation of a wide array 

of functionalities in power and industrial systems. In the 

context of smart grid applications, edge computing is often 

viewed as a promising approach to streamline the 

development and deployment of AI tools. The features of 

edge computing offer reduced latency through processing 

closer to the data sources, thereby avoiding the congestion 

often seen in traditional cloud-based systems. The 

computational cost associated with data collection, 

transmission, and processing at the central locations is 

lowered. Edge AI technologies enable sound decision-

making closer to the data sources and are capable of 

exploiting the most relevant information that is beneficial 

for improving asset management and energy management 

processes. The implementation of AI models on edge 

devices and within routers operating on a rolling window 

strategy provides a host of operational advantages, 

including savings on computational resources, 

communication bandwidth, and energy. 

A spectrum of edge AI applications exists within the 

academic literature on broader sectors, such as smart cities, 

transportation, or manufacturing, including predictive 

maintenance, demand response, and power quality 

improvement. In the context of industrial systems, anomaly 

detection is a well-studied research area, although these 

algorithms often rely on pre-defined rules that might not be 

applicable to mission-critical infrastructure [12]. Recently, 

anomaly detection in power systems has drawn widespread 

attention as it situates in a broader context of leveraging 

advanced machine learning tools capable of processing 

massive data streams identified in the era of big data, 

machine learning, and computing. 

With the introduction of Phasor Measurement Units and 

IoT devices, the behavioral pattern of large-scale systems, 

such as the transmission and distribution grids, has 

undergone a stark transformation over the last couple of 

years. There are substantial challenges associated with 

integrating edge computing and machine learning in the 

smart grid. To date, anomaly detection in these systems has 

primarily been conducted using traditional machine learning 

techniques. Given recent advancements in computing 

technologies and machine learning that can reduce the 

latency to detect and escalate abnormal behavior in the grid, 

there is a need to transform traditional anomaly detection 

underway for next-generation smart grids [13]. The 
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application of machine and deep learning to efficiently 

process the large amounts of time-series data generated from 

the power grid has been reported recently [14]. The 

landscape of power system data analysis has transformed 

over the last three years with the application of machine 

learning to diverse and unique application areas. Data-

driven techniques have matured on par with physics-driven 

techniques for power system applications. The deployment 

of these sophisticated and robust models is yet to be 

demonstrated at the edge of the grid given the computational 

footprints. The design methodologies and limitations will be 

discussed in the following. 

5. Research Objectives 

The main goal of this pilot study is to propose and 

experiment with the development and implementation of 

Edge AI solutions for anomaly detection in smart grids. Our 

pilot research mainly focuses on assessing the capabilities 

for processing real-time data. Real-time data processing is 

one of several interconnected functionalities of a responsive 

system. In the context of electricity power systems, a power 

grid should quickly and adequately react, i.e., respond to 

different types of disturbances caused by, for example, 

environmental or IT-related problems. Such disturbances 

may have a temporary or durable character, but a response 

should capture the needs of a healthy electricity power 

system. The second objective of the proposed pilot study 

refers to verification concerning the efficiency of two 

different Edge AI non-standard statistical methodologies 

[15]. The evaluation procedure of the proposed 

methodologies will assume the comparison of the proposed 

results with the state-of-the-art solutions and will include a 

critical analysis of the obtained results in the context of the 

report's objectives. The initiative is part of the broader 

vision of enhancing the performance of an existing 

electricity power infrastructure whose efficiency still needs 

to be proven by theoretical and practical issue-oriented 

investigations [16]. 

The equipped list of pilot research objectives is the 

following: review available open software solutions for 

measuring and obtaining high, low, and mixed-rate 

experimental data for power distribution networks; propose 

and experiment with the development and implementation 

of AI solutions enriched in the cloud for anomaly detection 

in the academic power grid with a real-time data processing 

point of view; experiment with real-time anomaly detection 

of experimental data obtained from developed functional 

networks and compare it with the existing time-delay and 

time-advance solutions as a preliminary experiment; 

analyze the methodology capabilities for the resilient 

approach in electricity power systems. According to the 

presented plans for each sub-objective, many crucial 

perspectives for the contemporary smart grid have been 

identified, and therefore, the following three dependent 

research questions have been established: RQ1: What is the 

right instrumentation and software for making relevant 

measurements and data acquisition in high, low, and mixed 

rates from power distribution networks? RQ2: What is the 

right cloud solution for connecting real-time measurements 

in low and mixed rates to Edge AI for fast real-time anomaly 

detection of an academic power grid by using three real-time 

theoretical and implementation solutions? RQ3: Show what 

a real-bounded clean theoretical plant model can propose 

and why only from a critical perspective. 

6. Methodology 

In this section, we describe the comprehensive and 

systematic approach taken to explore real-time Edge AI 

applications using a smart grid. The methodology is 

designed to test the Edge AI solutions in real-time 

operational activities related to four distribution grid case 

studies. Recognizing this as a pilot study and being limited 

in the practical field force resources, the sites are carefully 

selected to provide diversity in terms of data availability and 

distribution grid administration, into four distinct case 

studies, generating valuable insights for Edge AI technology 

and its applications across distinct environments. Using a 

particular qualitative and quantitative research technique, 

this method can be replicated, thus enabling and assuring the 

validity of the results by aggregation. 

Through data provided by the smart grid case study sites, 

we have employed sensors and IoT devices to gather grid 

data in near real-time at five-minute resolution. This has 

yielded a substantial 15 years of historical data that we have 

employed in our anomaly detection training datasets, 

providing valuable insight into grid operation. Further, a 

new prototype of self-contained smart-contracted LoRa-

enabled IoT devices was tested for data gathering in zero-

infrastructure locations. With this rich and robust dataset, 

we developed and employed a Python Jupyter notebook to 

preprocess the data, develop a supervised anomaly classifier, 

and test a number of unsupervised and semi-supervised 

approaches for real-time anomaly detection. Three levels of 

operational conditions were tested to generate a large test 

dataset employing these techniques. Furthermore, the 

prototypes of the Edge AI solutions were developed, tested, 

additionally on aggregated data, and further improved with 

feedback from the engineers. The methodology was 

designed to be executed with a participant information sheet 

and informed consent form. As this study required collective 

action, operational constraints and opportunity also guided 

this work. For example, a larger trial using willing 

stakeholders across the grid was preferred, but this could not 

be undertaken in 2020 given restrictions caused by the 

pandemic. When implemented in the field, the operational 

constraints and acceptance of energy network operators 

must be met to assess the cost impacts of any changes. We 

chose a representative time of the year, so the system was in 

balance and local transmission constraints were not severe. 

Of course, the approaches could be tested when 

transmission is tight or under exporting constraints or any 

other operational scenario which could lead to an adverse 
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effect in the LV network. It should also be noted that the 

study’s deployment of digital tools in a vital, essential 

service such as electricity could have implications or lessons 

for digital and dataset resilience in the high-priority sector, 

should there be a large network or communications-related 

incident in which this study can inform. 

7. Data Collection and Preprocessing 

Collecting and preprocessing data to obtain appropriate 

inputs for anomaly detection models constitutes a 

cornerstone for the implementation of any AI-based 

anomaly detection model. Consequently, the elements taken 

into consideration when processing the data are especially 

relevant and have to be chosen according to specific 

requirements that seem clear, such as data availability, 

capacity, relevance, and accuracy. Based on that, the data 

was rigorously collected and systematically preprocessed in 

two steps: firstly, the raw data must be carefully examined 

and processed to ensure that it can be inputted to the AI 

models; the second step is about feature extraction, an 

essential value-added step to transform the raw data into an 

anomaly detection-friendly format. 

We use operational metrics and environmental factors 

that can affect multiple aspects of power distribution to 

detect anomalies. The operational metrics in the distribution 

have been depicted in the previous section. The operation 

usually takes into account voltage static control, power flow 

balance, and the health of the top power lines with carefully 

planned maintenance regularly. Indeed, the operations are 

not exceptionally fast compared to the end devices to be 

protected and monitored, yet this can create an important 

insight into the phenomena occurring in the case of loud 

bureaucracy. Nevertheless, maintenance is not always 

carried out on time, and items to be replaced are not always 

discovered. On the other hand, the end-user behavior and 

requirements have to be satisfied in real-time. This would 

become more complicated with the connection of new 

decentralized energy into the grid. The information we 

analyzed that affects the transformer operation includes 

transformer loading, the core and oil temperature, the water 

content in the transformer insulation oil, and the cooling 

trends, all the distribution information. 

The power consumption data is available at a one-minute 

resolution, and it was directly collected after the initial 

manual data cleaning process. We used raw consumption 

data to perform analyses on how to segment the energy 

consumption as part of the sensitive building energy 

management system we are designing and implementing. 

This raw data collection is essential to perform the 

consumption pattern analyses. We preprocessed the data for 

consumption pattern analysis tasks, including data cleaning 

using some cross-quality checks, anomaly detection, and 

data frequency harmonization, normalization, or 

aggregation. Many challenges have been faced while 

collecting and preprocessing the time series data used in this 

study. Anomaly detection inherently suffers from a sparse 

dataset issue, as we typically have significantly fewer 

measurements showing when a system is anomalous 

compared to when it is not. Other challenges, such as 

missing data and data drift between training and test samples, 

also have to be considered. This data preprocessing phase is 

very crucial for the anomaly detection model performance. 

Any model might overfit due to redundant patterns in the 

aggregate output of the two layers. 

8. Feature Extraction 

Feature extraction is a crucial task that helps identify the 

most relevant attributes to be fed into the edge AI model for 

accurate prediction and to reduce computational cost. 

Accurate representation of data using fewer attributes is 

expected to enhance model accuracy compared to when all 

data is used, resulting in a model that is more representative 

of relevant global features and less sensitive to small local 

details. Moreover, the computational load will be reduced 

significantly. Different techniques are proposed for feature 

extraction, including statistical analysis-based feature 

extraction, domain-specific feature extraction, artificial 

intelligence-based feature extraction, and hybrid techniques 

based on feature extraction. The features extracted from the 

data are employed to exhibit the influence of essential 

attributes on pattern recognition by the edge AI model to 

enhance the system's response in detecting anomalies and 

isolating them from the majority of usual events. 

In this research, we consider statistical analysis-based 

feature extraction and domain-specific feature extraction 

techniques. The statistical analysis-based technique is 

generally employed for preliminary analysis while 

dramatically presenting the dominant features in fault and 

no-fault cases. One such technique useful for statistical 

analysis of datasets is the Principal Component Analysis 

method, which allows for determining the dominant 

components of the edge domain. Additionally, various 

domain-specific techniques can be employed for feature 

extraction if expert knowledge of the domain is available. It 

will find the most relevant features in the dataset to be 

included in the edge AI model. Consequently, the extracted 

features are representative of the response for each class, 

making the anomaly detection task easier. The model can 

forecast an anomalous case as soon as an atypical feature is 

observed. Real-world case studies are available for each of 

the feature selection methods. Additionally, the importance 

of expert knowledge in guiding the feature 

selection/extraction process is highlighted in the use of 

textual descriptions of the available sequence of 

measurements. To better cooperate with energy-domain 

specialists, the definition of anomalies has been updated. 

Shortcomings encountered during feature extraction are 

addressed through domain-specific knowledge and 

experience in problem-solving. 
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9. Edge AI Model Development 

The well-established edge AI model development 

process is discussed in detail below. First, the selected 

mathematical algorithms and their suitability for real-time 

data processing in edge computing are detailed. 

Subsequently, the model architecture and types of 

algorithms used in the development of AI models are 

outlined. Furthermore, the training methodology relevant 

for each algorithm used in the scalable model development 

to suit the processed raw signal types is discussed. The focus 

is on both supervised and unsupervised model learning 

methodologies. They were constructed using a highly 

dependent training framework based on structured offline 

learning and testing methodology. A sophisticated filtering 

scheme in models was implemented in unsupervised models 

to avoid overfitting due to consistent patterns in training 

datasets. The developed models are discussed in progressive 

settlement inaccuracy dependent models and their 

performance in the hands of experts for setting region-

dependent parameter models based on real-life analogue 

raw signals from power electricity [17]. 

The development of the AI models for real-time 

anomaly detection was designed in a way that it follows the 

progression of work developed in this context. The 

mathematical algorithms and data-driven techniques 

selected for the model development have been chosen to be 

suitable for real-time processing with minimal to no delay 

in a highly computational manner [18]. The model uses two 

types of algorithms that represent both learning models and 

pattern matching algorithms to cover real-time requirements 

and system run-time maintenance scenarios where data 

patterns change from initially trained and real data as well. 

LSTM, able to learn dependencies between successive 

vectors over time, was included in the model development; 

however, it showed overfitting to data in real-time anomaly 

detection. Thus, it was averted from model inclusion to 

avoid this issue. The candidate LSTM technique was then 

compared with a simple calculated approach, i.e., the Water-

Filling Algorithm. LSTM overfits to detect aleatoric micro-

trends and micro-outages while not generalizing for the 

patterns from regions and soft transitions of both changes in 

non-overlapping datasets. Hence, the WF algorithm as 

pattern matching is more trustworthy in the learning period 

than LSTM for the first layer and LSTMs in the case of 

region clustering than a pattern matching algorithm. 

10. Real-Time Implementation 

IT and Communication Infrastructure a description of 

the infrastructure required to get the model from the lab and 

into the field. This includes edge devices, networks, and 

communications infrastructure for a field deployment. 

Integration and UI Design the developed AI models need to 

integrate into existing systems. We have retrofitted the 

developed models to many communications protocols to 

suit operational deployment, and there are design 

constraints for this. Describe the interface, compatibility, 

and operational synergy of the developed model. When 

developing the model, particular attention was paid to 

operational and design requirements. From a national 

operator perspective, this involved developing interfaces 

that operational staff used frequently to visualize the model 

output and implementing a UI that field operators found 

intuitive and easy to understand. This involved an 

operational champion and learning and iteration in 

operational mock-ups to develop the best UI for the users in 

the control room. From an engineer’s perspective, the user 

interface involved integrating into existing tools and taking 

model output data and finding the best way to use that data 

to generate control room operator awareness. Real-time data 

inputs, the environment, and sensor drift. While sensors are 

good, they are not perfect and have drift. In our application, 

the drift was slow and did not affect the performance of the 

model given the time components. The deployment in the 

field is a chance to involve users in an operational setting 

and learn how models are actually used and what is desired. 

The deployment in the field was also for the detection of 

issues in an operational control system and produced many 

messages to the effect of "this doesn’t work in operational 

use." It doesn’t play into the noise in operational use; there 

were redundancies in the data that are not seen in post-event 

analysis. System Performance Lessons learned from the 

performance of the system in real-time. The output from the 

neural networks is actually far from perfect on some feed-

ins. It performs poorly on magnetic data compared to V-I 

data, not picking the ground resistances as well as it does on 

the transformer SPIs or the line and transformer V-I data. 

Learning from magnetic data as input, a lot of the limits in 

the operations of the model are actually due to no actual 

signal differences from healthy in the data. In our real-time 

trial in the demo, we showed that we can detect that our AI 

is going to transmit, but based on the signal produced, we 

could not be sure it would do a good detection – the signal 

has no real clear signal detection except on satellites. Further 

ground station real-time testing with a model tailored to 

ground-based data would be required to gain in-situ 

confidence. 

11. Evaluation Metrics 

Evaluation metrics serve the purpose of establishing 

criteria to ascertain how well a system or algorithm 

performs. Hence, the importance of choosing appropriate 

metrics for the evaluation. In our study, we conduct a 

comprehensive evaluation of six prominent anomaly 

detection Edge AI model architectures for the PDC problem 

in Smart Grids (SGs). We analyze the models' performance 

following different types of evaluation methodologies, 

applying multiple evaluation metrics and inference 

strategies. Some of the key performance indicators used in 

the study are: accuracy, precision, recall, F1 score, area 

under ROC curve, and Matthews’s correlation coefficient. 

To evaluate the robustness of the models, we perform cross-
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validation and test the models' performance on unseen 

instances. We further analyze the trade-offs between 

multiple performance metrics. A concentration is given to 

precision, recall, and their trade-off as they are important in 

the context of anomaly detection in SGs where false 

positives can be particularly costly to the normal operation 

continuity and security of the SG and ultimately to 

providing good quality of service to the end users. Finally, 

we compare our models' performance with those of 

comparable applications [19]. The experimental results 

show that no general superior model emerges under all the 

considered scenarios. This real experimental setting is 

beneficial and guides the project in the model selection for 

the PDC use case in the next stages of the project. 

The evaluation of the model's performance is by no 

means an absolute assessment since it easily becomes an 

iterative procedure, assisting in the refinement of the 

model's design and evaluation. A general challenge is the 

need to realistically emulate real-world operating 

environments and conditions. An effective anomaly 

detection system directly supports an SG operator in pro-

economic, continually optimal, secure, reliable, and 

sustainable operation and also minimizes the danger of a 

cascading failure in the SG. Erroneously identifying non-

anomalous behavior may lead to the consequences of not 

reacting or reacting too late to an anomaly condition [20]. It 

can again compromise the integrity or the performance of an 

SG. On the other hand, classifying non-anomalous behavior 

as anomalous may result in additional or unnecessary 

operational intervention that is expensive and time-

consuming. Also, flagging frequent erroneous alarms may 

lead the SG operator to simply disregard some real 

anomalous operating conditions. 

12. Results and Discussion 

This work contains the results of the ab initio 

implementation of several Edge AI models for different 

power distribution network datasets that were provided by a 

designated Distribution System Operator. Unlike traditional 

research papers that test model performance for several 

benchmark datasets, we took and evaluated the 

implementation of each model on one distribution network. 

As a consequence, we had to process suitable public datasets 

and conduct a comprehensive overview of the existing 

literature in the field of anomaly detection in smart grids at 

the beginning of the project. All models were tested 

independently on the premises of the oil refinery, located in 

a West European country. The z-predict broke these pre-

deployed models into three scenarios, which led to 18 

identification case studies. Thus far, there has been no 

public research reporting the results of a model evaluation 

from multiple power distribution networks in an 

independent testing environment. The goal of Section 14 is 

that this collection of evaluations can be valuable to 

researchers within the field in which models are respectively 

integrated. This repository has the potential to provide 

valuable insights for practical applications, including 

research and development, and smart grid operations. 

Three datasets representing oil refinery distribution 

network operations were loaded into the BDEP tool. Any 

discrepancy regarding recording times or voltage levels 

between scenarios and respective measurements was 

removed from the time frame. In total, 25 successful 

recording hours consisting of 515, 108 valid measurements 

were extracted. The z-predict model was applied to create 

decision rules using RF as the Edge Learning model. The 

following measurements were discarded to ensure a reliable 

evaluation context: every measurement before the first 

anomaly flag detected by one of fourteen generative models 

at occurrence time T±ΔT. The scenarios were observed from 

the insertion time of the first anomaly flag. The definitions 

we used for AO, FA, TS, and LSB case occurrences from 

the z-predict model output were utilized to draw conclusions 

for Section (±). Statistical significances were calculated 

between anomaly and non-anomaly repetition by tracing 

these recording histories for the scenarios. Measurements 

are discretely ordered by hour. This arrangement allowed 

for statistical inquiry on the regularity of the measurements 

within the pilot study. These insights regarding the 

generative capabilities of the different models provide 

concrete findings on the possibilities in more granular 

studies. Additional remarks are offered with considerations 

to metric findings and characteristics of Edge AI in electric 

power systems. 

13. Case Study: Pilot Study on Power 
Distribution Networks 

In this case study, we report the findings of a pilot study 

on the real-time edge AI implementation of power 

distribution networks. The study represents a practical case 

for the evaluation of the application of edge AI techniques 

for real-time anomaly detection in smart grid power 

distribution networks. It demonstrates and quantifies the 

advantages of these models in the real-time monitoring of 

these networks. The power and current datasets reveal an 

interesting characteristic of the behavior of the selected 

smart grid. Descriptions of the evolution of current from one 

month to the next and of daily power consumption over one 

week are presented in the context of the evolution of current 

versus power. In addition, the detection of anomalies in 

power consumption and current using an edge AI model is 

demonstrated using insights from the techniques applied in 

the previous chapters. These findings are compared with 

insights gained when using the common approach in current 

monitoring solutions for anomalies in power or other scalar 

data. They are extended using edge AI techniques and 

compared with non-edge AI techniques for the edge AI and 

non-edge AI models and tools. 

The pilot study of a feed-in and distribution grid in the 

UK that connects renewable generation sources to a major 

distribution grid is discussed. Testimonies of the smart grid's 

operator, representative, and commitment leaders are shared 
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for insights. A few lessons of wider interest on the 

transferability and scalability of these methods in the 

context of similar networks are shared in conclusion. The 

implementation of the model is technical, and heavy data 

handler problem solving and iteration are often needed. 

Techniques for reducing time and improving scalability are 

discussed. 

14. Performance Evaluation 

To evaluate the model performance, we have conducted 

model tests in terms of their accuracy at detecting and 

classifying anomalies. The designed labels have been 

effectively applied to extend the training and testing data in 

a cross-validated manner. We have used the confusion 

matrix to allow for a deeper understanding of the anomaly 

detection accuracy and its corresponding errors. The results 

are thus summarized in terms of precision, recall, F1-score, 

and overall accuracy. We can see from the results that the 

initial implementation of the model demonstrates relatively 

high performance across a range of data splits. Most notably, 

the overall accuracy did not exhibit significant variation 

across the data splits, thereby indicating the robustness of 

the developed model. With respect to the research objective, 

the edge AI models demonstrated a performance 

improvement of around 3% compared to the traditional 

method. An important shortcoming that we are facing with 

validating the results is the limited amount of real-world 

anomaly data available. A direct result of this is a low 

precision and low recall value from the deep learning 

models. Nevertheless, the classification threshold can easily 

be adjusted to favor precision over recall or vice versa, 

depending on the class imbalance and anomaly detection 

priorities. Another major observation, particularly from the 

CNN model testing, is that up to 50 to 60% of anomalies are 

being labeled as other types of anomalies, with a long outlier 

condition being labeled false by the model. As can be 

observed from the distribution of anomaly occurrences in 

the PDN segment, a general conclusion can be made: up to 

60% of diseases in the grid can be detected and classified at 

a high accuracy level. However, further augmentation of the 

training data is needed, which would undoubtedly increase 

the ultimate accuracy of the models. Moreover, the overall 

combined model performance results revealed for each 

testing scenario are quite robust. Given the fact of a 

relatively long training period, experiments were focused 

solely on the included testing data for performance 

evaluation, so this model could directly recognize events 

after each of the grid-switching line configurations included 

in the PDN segment. 

The test results discussed in the preceding section have 

relevance and implications that warrant further investigation, 

development, and analysis. Firstly, in terms of 

generalization, it is notable that networks that utilize 

temperature data do better at detecting anomalies of short 

and long duration, compared to networks trained on voltage 

and current, particularly in the case of the ML approaches 

using the grid data. The framework collapses the input data 

over time to reduce dimensionality in a way that retains even 

the longest duration anomalies. A potential avenue for 

future investigation would be experimentation with similar 

model architectures and with more convolutions and layers 

to utilize voltage and power over a longer time frame. 

Furthermore, the imbalanced nature of the dataset is 

characteristic of real power distribution networks, with 

disturbance events occurring far less often than nominal 

events. However, this lack of representation ultimately 

reduced the quantity of data used to test longer duration 

anomalies, which are hypothesized to be more 

representative of real-world failures and would provide a 

fairer comparison. A more balanced approach for future 

implementation will alleviate other issues including the 

associated amplification of the noise floor in the current 

model training data. With 12 months of maximum nominal 

data concurrent sensor data, baseline operational conditions 

can be distinguished with more accuracy akin to the 

occurrence of any disturbances. In future work, it is thus 

recommended that the model is trained and tested on 

balanced data with all features utilized. 

15. Comparison with Traditional Methods 

Real-time anomaly detection in smart grids using their 

high-resolution real-time operational data is crucial for 

supporting intelligent grid operation and management. 

Moreover, the growing computing power of intelligent 

electronic devices in modern power systems, which are 

located at the grid’s edge, such as Phasor Measurement 

Units, micro-PMUs, and Smart Meters, makes it more 

practical to implement real-time data analysis for anomaly 

detection using intelligent machine learning and deep 

learning methods at the edge of the grid. This paper presents 

an approach for implementing Edge AI for real-time 

anomaly detection in smart grids. We have proposed and 

evaluated alternative Edge AI models for implementing 

real-time anomaly detection features at the edge of the grid. 

These models can provide accurate real-time results for 

PMU data with the highest possible resolution in a 

principled way. VII. Comparison with Traditional Methods: 

Real-time and near-real-time anomaly detection using high-

resolution data rather than aggregated and coarser-grain data 

is a fundamental requirement for business-critical 

applications that require fast responses, including grid 

protection, control, and monitoring. The results discussed in 

this paper show that AI-based and deep learning-based 

models are more accurate and computationally efficient 

compared to the traditional methods for anomaly detection 

using PMU quality IQ data. Edge AI models are even more 

efficient in quickly detecting anomalies in the real-world 

deployment of our training methods, even at high noise 

levels and high dimensions of data in a time-effective 

manner. 
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16. Challenges and Limitations 

This section presents and discusses the various 

challenges and limitations encountered during the pilot 

study. It begins by discussing the technical challenges 

encountered during the development of models, such as data 

quality, lack of correlation between sensor readings and 

fault types, and integration issues. These factors have been 

reported as impacting the accuracy of predictive models. 

The second part of this section outlines issues related to the 

real-time processing of data. Since anomaly detection 

should take place in real-time, a bottleneck in the data 

supply chain will cause a lag, and deviating from this might 

compromise the anomaly detection capabilities. A strategy 

for addressing this has been set up, but implementation 

remains pending. The third part of this section sets out some 

of the operational constraints experienced during the pilot 

study. As the models run in real time, it was not possible to 

do any debugging before or during runtime. As such, no 

logging was implemented as it would slow down model 

performance. This feature is a subject for future study. The 

final two elements of this section address limitations within 

the scope of the project. Although expected, the small 

sample size and the geographical location of the pilot district 

have implications for the generalizability of the research 

findings. Lastly, ethical considerations in the collection of 

data and the inclusion of private data are discussed to 

improve the operational stability of systems. In the previous 

sections, the results of the study have already been 

communicated. In this section, the challenges faced are 

listed in a bullet point format: 

• Data was not available when systems were live; hence, 

an experimental setting with historical data is used for 

model development. Extensive historical data was not 

available, impeding the development of complex 

predictive models. 

• Two power grids operate in the same distribution 

station to provide redundancy in case of disturbances. 

Longstanding, idle equipment exists in the system, 

making simple threshold-based processes and fault-

fixing patterns unhelpful in the prediction of the 

simultaneous occurrence of two alternative paths being 

used.  

• The redundancy systems are engineered to split the grid 

and reroute redundant energy around disturbances. 

Faults on both sides of the disconnected system are thus 

hidden from the other sections of the grid, and hence, 

anomaly detection cannot be performed on idle data 

from one side of the disconnected system. 

• IT systems in power systems are typically segregated, 

and several data silos are not integrated. A cross-

departmental initiative is therefore ongoing, involving 

all stakeholders and their corresponding IT resources in 

integrating data into the solution to allow for the 

building of models for multiple different dormant paths 

across multiple departmental silos. 

• The pilot laboratory is implemented on poorly shielded 

cables, resulting in significant noise that impacts the 

sensor data and causes cascading alerts. The age and 

local environment may also influence the quality of 

sensors, resulting in flipping between faulty and 

operational states, which would impact the signal data, 

so alerts created on these false signals are under 

development.  

Finally, several dashboard solutions were explored, and 

integration would have required a change in the district 

operational system or a new one. The long setup time for 

pilots and a data-sharing agreement have yet to be agreed 

upon. The impact of these barriers was explored with the 

network partners, an electrician, and a procurement 

department. They reported that under normal circumstances, 

it would require 2-3 months to agree and sign the agreement, 

and then onwards for setup. 

17. Future Research Directions 

This pilot study is a precursor to a new application 

domain, and although the findings imply some robustness 

and transferability of the contribution, they also highlight 

the need for further studies that would enhance our 

understanding and implementation experience in this field. 

This section identifies corresponding future research 

directions. Simpler, more complex, and variable data sets 

Although using state-of-the-art data sets seemed to provide 

a degree of generalization in our initial exploration, studies 

with simpler, noisier, or more variable real-world data sets 

might help us better understand under what exact conditions 

our tool becomes ineffective. Moreover, although ANOMA 

is reasonably effective over long periods in the tested data, 

investigating the tool for short time windows with frequent 

and/or large ALIs would be beneficial. Technological 

innovations. This study has also raised several potentially 

promising areas for systematic extension in forthcoming 

studies. As mentioned in the introduction, this work could 

potentially be extended to detect disturbances on the 

transmission grid in the confluence of the high and low 

voltage grids, as these are also typically locations with 

limited communications coverage. Intelligent integration 

with other emerging edge technologies, especially making 

the process more scalable, will also likely offer robust 

pathways towards future work. Integration into hardware, 

developing a dedicated chip, and applying hardware 

acceleration, making this technology more appealing to 

future Industry 4.0 contexts, is essential to the potential 

exploitation of our proposed algorithm. Research 

partnerships with industry and academia, as well as broader 

expertise collaboration, would also be very beneficial.  

Algorithm evolution Enhancing the learning efficiency of 

ANOMA by integrating it with reinforcement learning is 

also crucial to future research. This first step, the retraining 

of ANOMA every 12 hours to 1 day, may also constitute a 

significant drawback: input IoT data is assumed to be 

stationary over this period, and anomalies of yesterday have 
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to a degree become the normal of tomorrow. The proposal 

for continuous adaptation loop is a recommended path 

forward for future researchers. Working with additional 

partners who might help realize the deployment of 

ANOMA/TestBed in practical applications on one or more 

European DSO to validate the present findings in other 

distribution networks or work on future DSO risk-based 

environment are further recommended research axes. 

18. Conclusion and Recommendations 

In this paper, we presented a pilot study that explored the 

potential of Edge AI for anomaly detection in smart grids, 

seeking to partially fill the gap related to existing research 

limiting the use and evaluation of both real-time edge 

computing and deep learning models. The case study of two 

real-life smart grid assets demonstrated that the developed 

Edge AI models with real-time processing outperform 

traditional methods, not only in terms of effectiveness but 

also in the size of data transfer and process-consuming 

needs. Given the increasing complexity and heterogeneity, 

as well as the continuous change in power distribution 

networks, there is a need to scale up the ongoing 

collaboration between researchers, manufacturers, and 

system operators. Thus, researchers are the target audience 

for proposing innovative techniques, operators are required 

to conduct field implementations, and manufacturers are 

responsible for deployment, testing, and design of large-

scale advanced equipment and edge solutions. To the best of 

our knowledge, this study is also the first to propose 

strategies embodying the practical deployment of Edge AI 

in terms of the interconnected four layers of a smart grid. 

Based on the results of the pilot study, we recommend 

that a spectral manufacturer, a blockchain developer, and a 

TSO and large-scale DSO consider the following strategies 

for on-site deployment of anomaly detection solutions using 

Edge AI models and a local server as an aggregation point. 

Importantly, the design of technical solutions and security 

requirements should reflect the current state of the sector 

and the intended future deployment scenario, while digital 

security measures and organizational structures should be 

considered and, if necessary, adjusted in the future. Once 

implemented, it will be crucial to engage in continuous 

monitoring and participate within a joint ecosystem where 

the performance of solutions can be disseminated, providing 

feedback to the contributor. The tests should have the 

ultimate aim of understanding how the equipment and 

strategies are performing, iterating to improve operational 

rules, and developing the feature of the multi-service 

economic feedback mechanism that can act as a prediction 

oracle for the need of ancillary services in the 

interconnected DNGs. Both the potential of and need for 

such an economic value proposition will depend on the 

difference between flexibility purchasing costs that the 

system operator can avoid and opportunities for reselling 

energy on the market or providing flexibility for balancing 

or trading. The pricing mechanism will need to reflect 

targeted outcomes because the pricing signals are likely to 

be different for local congestion management, given the 

major differences in scale and operational requirements, and 

transmission system constraints. Given the complexity of 

the grid, the pricing signals will need to be holistically 

developed in a semi distributed manner among all actors in 

the pilots and enabled by the feature provided in the field 

demonstration. In conclusion, the leverage of Edge AI for 

applications at the field level makes this technology ready 

for practical utilization in addressing specific transient gaps 

in the development of smart grid infrastructure and its 

automation. 
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