
CyberSystem Journal, vol. 2, no. 1, pp. 53-64, June 2025 

 

 

Received  February 12, 2025; Revised March 2, 2025; Accepted May 10, 2025; Published June 30, 2025 

https://doi.org/10.57238/csj.2025.1006 

© 2025 by the authors. licensed under Creative Commons Attribution 4.0 International (CC BY 4.0). 

53 

CyberSystem Journal                                                                Research Article 

Leveraging deep Learning for Efficient Intrusion Detection 
in IoT Networks 
Noor Thamer Mahmood 1 *, Suhad Hatem Jihad2, Sumar Mohamed Khaleel3 and Ahmed Saleem Abbas 4 

1,2,3 Computer Center, University of Babylon, Babylon, Hilla, 51001,Iraq 
4 Prof. PhD, Software Department. College of information technology, university of Babylon, Science of College, University of 

Hilla; Babylon, Hilla, 51001,Iraq 

 

* Corresponding Author: Noor Thamer Mahmood, Email: nour.thamer95@uobabylon.edu.iq. 

 Abstract. Internet of Things (IoT) technology is experiencing rapid development and increasing 

use in a variety of applications, making it a potential target for cyber-attacks. Machine learning and 

deep neural network techniques are an effective way to address these challenges and improve IoT 

security. This research aims to design a deep learning techniques for intrusion detection in an Internet 

of Things environment with limited resources. The research focuses on improving the efficiency and 

effectiveness of current model using artificial intelligence and LSTM algorithms, ensuring reliable 

and effective security in the IoT environment. The proposed model is evaluated using a realistic data 

set, Canadian Institute for Cybersecurity Internet of Things 2023 Dataset  (CICIoT2023) devices, and 

using performance metrics, namely Accuracy, Precision, F1 Score, and Recall. The results show its 

compatibility and effectiveness in a real environment, with 99.1% accuracy recorded. This paper is 

considered an important contribution to the field of IoT security and provides an effective 

methodology for developing advanced security solutions in the IoT environment that enhance traffic 

analysis, identify abnormal behavior, and take the necessary measures. 
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1. Introduction 

he Internet of Things (IoT) illustrated in Figure 1, 

represents a paradigm shift in modern computing, 

connecting billions of devices—including sensors, 

actuators, and embedded systems—to share data and 

perform tasks autonomously. The IoT is now deeply 

integrated into many sectors, such as healthcare, 

manufacturing, transportation, and smart cities. However, 

the increasing ubiquity and complexity of IoT systems have 

also introduced significant security vulnerabilities, 

particularly due to their resource-constrained nature, 

heterogeneous protocols, and limited built-in defense 

mechanisms. 

As IoT networks continue to expand, the cyber threats 

targeting them have become more sophisticated, frequent, 

and difficult to detect. Common attacks include denial of 

service (DoS), data exfiltration, botnet deployment, and 

unauthorized access. Traditional intrusion detection systems 

(IDS), which rely heavily on static rules or signature-based 

detection, often fail to generalize well to sophisticated and 

previously unseen attacks. This creates an urgent need for 

intelligent, adaptive, and lightweight IDS solutions that 

operate efficiently in real-time and under the resource 

constraints typical of IoT environments. 

Current intrusion detection techniques suffer from 

limitations in IoT environments due to high false positive 

rates, poor adaptability to new threats, and a lack of 

contextual learning from sequential traffic patterns. 

Furthermore, IoT datasets are often imbalanced and noisy, 

impairing the learning ability of traditional models [1]. 

T 
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Figure 1 Applications of Internet of Things [1]. 

This paper aims to leverage deep learning, specifically 

the Long Short-Term Memory (LSTM) architecture, to 

build a robust IDS framework specifically designed for IoT 

networks. LSTM networks are known for their ability to 

learn temporal dependencies in sequential data and are well-

suited for modeling network traffic patterns over time and 

distinguishing between normal and malicious behavior. The 

goal is to train and evaluate an LSTM-based model on the 

CICIoT2023 dataset—a modern, realistic IoT traffic 

dataset—by applying a structured preprocessing pipeline to 

address missing values, balancing the class distribution 

using Synthetic Minority Oversampling Technique (SMOT), 

and normalizing features using a min-max metric. 

The paper hypothesizes that an LSTM model, when 

trained on a properly preprocessed and balanced IoT dataset, 

can achieve high detection accuracy with minimal false 

positives, outperforming traditional rule-based or shallow 

learning models in intrusion detection tasks. 

The remaining sections of the paper are organized as 

follows: 

• Section II provides a detailed review of related 

work and current IoT intrusion detection 

techniques. 

• Section III outlines the proposed methodology, 

including dataset preparation, preprocessing 

steps, and LSTM model configuration. 

•  Section 4 presents experimental results and 

analyses, including performance evaluation 

and comparison with related models. 

•  Section 5 concludes with key findings and 

future research directions 

 

1.1 Internet of Things Architecture   

Especially in large IoT networks, where there are 

challenges related to data integrity and confidentiality. The 

number of security concerns such as exposing them to 

cyber-attacks has increased [2]. Constant, unmanaged 

exposure to the Internet can leave devices and the 

underlying network vulnerable to various types of attacks. 

As Internet-connected IoT devices grow, the point of attack 

and the potential risk of these devices being compromised 

and exploited in unwanted cyberattacks also increases.  

The three-layer IoT architecture,  as shown in figure 2, 

consists of the following main layers: perception layer, 

network layer, and application layer. We will highlight each 

layer in the following context. 

 

Figure 2. IoT layers Architecture [3]. 

1.1.1 Perception layer 

The perception layer consists of devices, such as sensors, 

that enable it to optimize its surrounding environment. This 

layer is like the sensory system of things, where devices 

collect information about the surroundings and send it 

across the network. Devices in this layer include, for 

example, temperature and humidity sensors and medical 

devices. Besides sensing functions, this layer also includes 

action execution devices, such as actuators, that react and 

execute required commands[4]. 

1.1.2  Network layer 

The network layer is a means of transferring data from 

the perception layer to the application layer via specific 

paths. Its primary function is to receive data from devices in 

the perception layer and route it through integrated networks 

to the application layer. Network and mobile technologies 

used include IEEE802.11, 4G, 5G, Bluetooth, and Zigbee. 

In addition, this layer also includes the network 

management process to ensure the smooth and error-free 

operation of IoT systems[5]. 
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1.1.3 Application layer 

This layer provides application services to users and 

subscribers. The layer uses the context collected from the 

lower layers to provide smart applications such as smart 

homes, e-health, and smart transportation to end users. This 

layer is an essential part of the IoT system as it collects 

information from the underlying technologies to provide 

useful and easy-to-use applications to end users. 

 The Internet of Things aims to connect things to a 

network and collect and process the information provided 

by these things. IoT networks are enabled by capabilities 

that are logically classified into two main categories: device 

capabilities and gateway capabilities. Hardware capabilities 

include direct and indirect interaction with the network, 

while gateway capabilities include support for multiple 

interfaces and protocol switching [3-6]. 

 

1.1.4 Security Attacks in the IoT Network – 

Perception Layer Environment 

Security challenges in the perception layer environment 

of the Internet of Things become really important because 

of the device and connection diversity plus a large number 

of connected devices. Since their main function is to collect 

data, then they become vulnerable to data forgery and theft 

as well as attacks on the information gathered by the IoT 

devices; also, it may lead to damage to the IoT devices and 

make the network completely unavailable. 

1. Waterway attacks: A compromised node in the 

perception layer advertises tempting false 

power, computation, and communications 

capabilities to the nearby nodes such that they 

divert data traffic to the node. This then permits 

the attacker to collect data traffic or distort data 

traffic before delivering it to the application 

layer. 

2. Node capture breaches: This attack discloses 

sensitive information, such as group keys and 

radio keys from the compromised node, 

therefore compromising the security of the 

entire system. 

3. Injecting malicious codes: By exploiting 

vulnerabilities and injecting malicious codes, 

the attacker could assume control of a node or 

device at the perception layer, thereby leading 

to unauthorized operations. 

4. 4. False data injection attacks: Gain on the node 

or device is taken; thereafter, instead of real 

data, false data is injected, negatively 

impacting the system’s effectiveness. 

5. Replay attacks: Successful legitimate 

identification information acquisition from the 

source host enables a follow-up attack. 

6. Eavesdropping: Wireless device-to-device 

communication can be utilized by an attacker 

to capture useful data. 

7. Sleep Deprivation Attacks: The smart node in 

the perception layer has its battery drained 

through increased power consumption or 

actions it was not supposed to take during its 

sleep period, which is how sleep deprivation 

attacks work. These attacks would require 

strong security strategies to be considered in 

the list of actions that need to be taken to secure 

against security threats in the environment of 

the Internet of Things perception layer. An 

entity, whether legitimate or not, can assert its 

identity through multiple identifiers at the 

disposal of it, thereby muddling the perception 

layer. E.g., an illegitimate entity can 

communicate with several other entities to 

enhance its standing and even con the entire 

system into drawing false conclusions. 

8.  In a black hole attack, the attacker tries to 

create artificial packet loss at the perception 

layer. For this, packets are delivered by the 

compromised node that represents an IoT 

where packets are delivered, which should not 

be said forward to the next node. This can be 

very harmful when coupled with a denial of 

service attack because due to one more such 

attacks, the compromised node can singly more 

nodes. 

9. Finally, Denial of Service (DoS) attacks, the 

main goal is to exhaust the resources of the 

perception layer to make the entire IoT or a 

specific node unavailable. For example, 

jamming attacks can disrupt communication 

between IoT sensors and the gateway, resulting 

in disruption to services provided to users. 

These attacks can be carried out by sending 

high-range signals to overload the 

communication channel between devices, or by 

flooding the gateway with forged data. 

In addition, there are important security requirements for 

IoT and gateway, such as communications security, data 
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management security, service delivery security, integration 

of security policies and technologies, mutual authentication 

and authorization, and security auditing. The gateway 

should implement these requirements to ensure security and 

privacy in the IoT system.[7-9].  

1.1.5 IoT Security and Privacy Requirements 

     According to ITU-T Recommendation Y.2066, a 

list of security and privacy protection requirements for IoT 

is provided. These requirements refer to the functionality 

required during the capture, storage, transmission, 

collection, and processing of object data, as well as the 

provision of services involving objects. These requirements 

are relevant to all players in the IoT field. Below are these 

requirements[15-18]: 

- Communications security: There must be a secure, reliable, 

and privacy-protected communication capability, which 

allows blocking unauthorized access to data content, 

ensures data integrity, and protects privacy-related data 

content during transmission or transfer over the Internet of 

Things. 

- Data management security: There must be a safe, reliable, 

and privacy-protected data management capability, which 

allows blocking unauthorized access to data content, 

ensures data integrity, and secures privacy-related data 

content when stored or processed in the Internet of Things. 

- Service delivery security: The possibility of providing a 

secure, reliable, and privacy-protected service must be 

provided, which allows blocking unauthorized access to the 

service and enables illicit service provision, and protects the 

privacy information of IoT users. 

- Integration of security policies and technologies: Different 

security policies and technologies must be standardized to 

ensure consistent security control over a variety of devices 

and user networks in the Internet of Things. 

- Mutual authentication and authorization: Before accessing 

the IoT, mutual authentication and authorization must be 

performed between the device (or IoT user) and the IoT 

according to defined security policies. 

- Security Audit: IoT must be supported by security audit to 

ensure transparency, traceability, and redundancy of data 

transmission, storage, processing, and application access. 

In addition, ITU-T Recommendation Y.2067 provides 

specific security requirements that a gateway should 

implement, which helps achieve security in an IoT system. 

As shown in Figure 3. 

1.1.6  Security Considerations 

As we increasingly rely on interconnected smart devices 

in our daily lives, the risk of these devices or “things” being 

targeted by attacks and intrusions is also increasing, 

potentially leading to device malfunctions and putting our 

privacy and safety at risk. So, security turns out to be a major 

challenge to consider along with safety in IoT. This follows 

closely on the physical world. In addition, the issue of 

managing IoT devices points to the challenges you may face 

in terms of accountability, diversity that characterizes the 

IoT ecosystem, and scalability issues. There are many 

different concerns that hinder the standardization of secure 

IoT ecosystems, including large-scale attacks, limited 

hardware resources, diversity in the ecosystem, 

fragmentation of standards and regulations, widespread 

deployment, security updates, insecure programming, and 

unclear obligations in liability guidance [19-20]. 

2. Related Works   

The last ten years have seen a growing interest in 

securing Internet of Things devices from cyber threats. This 

has led to extensive research in machine learning and deep 

learning. A number of studies have been conducted to 

improve the accuracy of intrusion detection while reducing 

the number of false positives. For example, the study 

proposed a deep learning ensemble methodology that 

included CNN, GRU, and LSTM which when used together 

achieved an accuracy of 99.7% based on data from NSL-

KDD. Another example is a study that proposed a 

lightweight dense random neural network (DnRaNN) that 

achieved an accuracy of 99.14% based on ToN_IoT. While 

another study proposed a CNN-BiLSTM model with batch 

normalization which improved the accuracy to 96.3% on 

NSL-KDD. More studies used artificial neural networks to 

detect IoT threats with an 84% accurate result like in the 

study conducted by  and showed that Decision Tree and 

Random Forest models could hit 100% accuracy based on 

the CICIOT2023 dataset. Another study that used LSTM for 

the same purpose is conducted by Chaganty et al. in the year 

2022 with a result of achieving 97.1% accuracy in intrusion 

detection in SDN-IoT networks. Further recent 

developments include a lightweight model DL-BiLSTM [3] 

and the architecture of Bi-GRU-CNN (2023) having results 

better than the traditional way of detecting malware. These 
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studies have collectively strengthened the security of IoT, 

leading to high robustness and accuracy in detecting system-

intruded cyber threats[20-26]. 

In conclusion, studies conducted by many researchers 

emphasize the critical importance of securing Internet of 

Things (IoT) devices against cyber threats and unauthorized 

access. Each study proposes innovative approaches, 

leveraging machine learning (ML) and deep learning (DL) 

techniques, to enhance intrusion detection and cybersecurity 

in IoT environments. These methodologies address diverse 

challenges, such as resource constraints, data complexity, 

and the evolving nature of cyber threats. Specifically, 

studies highlight the effectiveness of ensemble-based deep 

learning models, lightweight neural networks, and LSTM-

based methods in detecting and mitigating IoT-based attacks. 

Collectively, these studies contribute valuable insights and 

solutions to enhance the security and resilience of the 

Internet of Things. Ecosystems against cyber threats in an 

expanding digital landscape [27-28]. 

3. Methodology 

This study designs and experimentally evaluates an 

intelligent intruder detection model for the Internet of 

Things (IoT) environment. The proposed model uses a deep 

neural network model known as Long Short-Term Memory 

(LSTM), which belongs to a subclass of recurrent neural 

networks specialized for time series data. The methodology 

begins by clarifying the research problem of the poor 

performance of legacy intrusion detection systems in 

detecting advanced and unknown cyberattacks within 

heterogeneous IoT networks where data sources are 

multiple. The real-world CICIoT2023 dataset is used, which 

simulates 33 different types of attacks distributed across 

more than 105 IoT devices; therefore, it has a highly 

representative and realistic data structure. 

 The first steps in preprocessing were to address missing 

data and noise by removing them, then balancing the class 

distribution using  the synthetic minority 

oversampling(SMOTE) to eliminate the class imbalance 

problem. Applying Min-Max normalization helps 

standardize the range of numeric values, thus making the 

learning model more stable. The data is then split into two 

sets for training and testing at a ratio of 80/20, respectively. 

 The proposed model is built using an LSTM layer with 

64 memory cells, a dropout layer to mitigate overfitting, and 

a sigmoid output layer to support binary classification. The 

model is trained using the Adaptive Moment 

Estimation )Adam( optimizer and the Binary Cross entropy 

function as a loss metric. Performance is evaluated using 

important metrics such as precision, recall, accuracy, and  

performance metric that balances precision and recall ) F1 

score   ( . The model was developed in Google Collab using 

TensorFlow, Kera’s, and Scikit-learn for ease of 

implementation and reproducibility. Furthermore, this 

performance is compared to standard classification methods, 

including Random Forest and SVMs. This comparison aims 

to determine whether the proposed model outperforms in 

terms of its handling of time series data and generalization 

efficiency. 

 

Figure 3. The layout of the proposed methodology. 

 

Figure 3 in this section shows the proposed methodology 

for building an artificial intelligence model that focuses on 

detecting cyber-attacks and intrusions using deep learning 

techniques. 
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The main stages include defining the problem, collecting 

data, pre-processing for consistency, selecting relevant 

features for the  Artificial Intelligence )AI( model, selecting 

an appropriate machine learning algorithm based on data 

characteristics, and training and evaluating the selected 

models. Finally, the optimized model is deployed to obtain 

realistic predictions in fraud detection and user behavior 

evaluation. 

   The study uses LSTM with the “CICIoT2023” 

dataset. Model performance is evaluated using metrics of 

precision, precision, recall, and F1 score for a 

comprehensive evaluation. 

A visualization of the proposed approach is shown in Fig. 

This methodology provides a well-organized strategy for 

developing the proposed deep AI model, which contributes 

to early mitigation of security risks. The proposed model 

consists of several main stages, which will be explained in 

the following section: 

3.1 Dataset 

A dataset referred to as “CIC IoT Dataset 2023” which 

is considerably new, was brought into formation to support 

programs of analysis concerning security within the IoT 

environment. This dataset comprises 33 varieties of attacks 

carried out on more than 105 IoT devices and is split into 

seven main categories. The first six are DDoS, DoS, Web-

based, Brute Force, Spoofing, and Mirai attacks; the 

malicious IoT devices on other IoT devices carry these out. 

The last one is Recon. 

 

Figure 4. Dataset overview[41]. 

Figure 4 presents numerous IoT cyber-attacks as well as 

an equal number of dataset rows hence posing a threat to 

cybersecurity concerning the availability and integrity of 

computer systems and networks. The attacks comprise 

floods such as UDP and ICMP Floods and hash-based 

attacks which are incorporated in DDoS attacks. A 

disruption of service is caused by flooding a single source 

with traffic; web-based attacks use SQL Injection and XSS, 

among many other related web application attacks. Brute 

force attacks try to gain unauthorized access to something 

by determining a username and password combination, 

while other attacks try to impersonate network traffic or 

actual entities. In the end, Mirai attacks typically focus on 

IoT devices and include GRE IP, and UDP Plain attacks. 

The dataset gives a full detailed preview about the 

attributes and behaviors about network traffic packets- 

timestamp, flow duration, protocol type, data transfer rate, 

number of tags, etc., so that it will help network 

professionals to comprehensively and accurately examine 

the network performance and security posture [29] . 

3.2 Preprocessing 

" CIC IoT Dataset 2023" is imbalanced nature. Figure 

5 shows unbalancing " CIC IoT Dataset 2023” dataset. 

 

Figure 5. distribution of classes in 

unbalanced dataset 

To address class imbalance in the CICIOT2023 dataset, 

the SMOTE  technique is applied. First, the minority class 

within the data set is identified, which typically represents 

the least frequent class. Preprocessing involves separating 

features and the target variable. SMOTE is then used. 

Artificial samples are created for the minority class. The 

original dataset is then combined with these synthetic 

samples to create a balanced dataset[30]. This approach 

aims to mitigate the class imbalance problem, which may 

improve the model's performance on tasks such as intrusion 

detection or classification. Figure 6 shows the distribution 

of classes in the dataset after applying the SMOT method. 
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Figure 6. distribution of classes in balanced 

dataset. 

3.3 Normalization 

An additional preprocessing procedure involves min-

max normalization, often referred to as feature scaling. This 

method entails applying a linear transformation to the data, 

effectively rescaling it within a range of (0, 1) [31]. The 

normalization process is carried out in accordance with 

equation (1): 

𝑥 𝑛𝑒𝑤 =  
𝑥−𝑚𝑖𝑛 (𝑥)

(𝑥) −𝑚𝑖𝑛 (𝑥)
                  (1) 

 

Where x new represent normalized x. 

3.4 Splitting dataset 

The data set is divided into two parts: a training part and 

a validation part. The training portion (80%) is used to train 

the neural network of the proposed model. Training data is 

fed to the neural network, and the weights and parameters 

are updated during the training process using capture and 

optimization algorithms. Between training rounds, the 

remaining portion (20%) allocated to validation is used to 

evaluate the network's performance and verify its ability to 

handle new data that was not used in training. Performance 

metrics, such as accuracy rate and confusion matrix, are 

used to evaluate the model's performance and effectiveness 

in dealing with the tasks at hand. 

 

 

4. Machine learning 

Machine learning, which is the basic part of AI, enables 

algorithms to learn from data and make decisions. These 

comprise supervised and unsupervised learning and 

reinforcement learning. In supervised learning, models are 

built for making predictions based on labeled data; in 

unsupervised learning, data is used for finding patterns, and 

in reinforcement learning, the model makes optimum 

decisions based on the interaction between an agent and an 

environment. The supervised methods covered include 

support vector machines, decision trees, and logistic 

regression, with the last being used when the output variable 

is continuous. This structure gives very good tools for data 

analysis, prediction, and decision-making in different 

application [30]. 

 

Figure 7. Type of Machine learning [36]. 

The deep learning algorithm LSTM was chosen, as 

described in the next section. 

4.1 Long Short-Term Memory (LSTM) 

The architecture of long-term memory (LSTM) neural 

networks has evolved over time and is described by the most 

common architecture shown in figure 8. The LSTM unit 

comprises within the cell core three gates, which govern the 

information flow and state of the cell. These gates are the 

input gate, output gate, and forget gate. Those cells are 

interconnected with each other which means that all 

information which is used as a memory has to be inside one 

LSTM cell. 
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Figure 8.  LSTM cell architecture [33]. 

This is the structure of an LSTM cell representing the 

input-output time step, where 𝑋 is the input, ℎ is the output, 

𝐶 is the cell state, and 𝑓 is the forget gate. The processes are 

shown as dots inside the light red circle. These gates are 

based on common sense: 

a) The forget gate directs the cell to "forget" or discard 

information from its internal state. 

b) The cell is routed through an input gate, where new 

information is stored in the cell's internal state. 

c) Next, the cell emits what is known as an output gate, 

which is a filtered output of the cell's internal state. 

𝑓 =  𝜎 (𝑊𝑓 ·  [ℎ − 1, 𝑋] +  )                                          (𝟐) 

 

=  𝜎 (𝑊 ·  [ℎ − 1, 𝑋] +  𝑏)                                             (𝟑) 

 

𝑂 =  𝜎 (𝑊𝑂 ·  [ℎ − 1, 𝑋]  +  𝑏𝑂)                                 (𝟒) 

 

𝐶 ˆ  = tanh (𝑊𝐶 · [ℎ−1, 𝑋] + 𝑏𝐶)                    (5) 

Then, the internal cell state is computed as 

C =  ·  Cˆ +  f ·  C − 1                                              (6) 

The final output from the cell, or ℎ, is then filtered with 

the internal cell state as 

ℎ =  ·  𝑡𝑎𝑛ℎ(𝐶)                                                                (6) 

Weights and biases are associated with each gate, much 

like in neural networks. To enable an LSTM cell to learn, 

these weight matrices are integrated with gradient-based 

optimization. In the above equations, weight matrices and 

biases are denoted by symbols  , 𝑏𝑓 , 𝑊, 𝑏, 𝑊, 𝑏, and 𝑊𝐶, 

𝑏𝑐, respectively. An Recurrent Neural 

Network   ) RNN(/LSTM network retains data from previous 

time steps and generates predictions for time series by 

sequencing these cells, as illustrated in Figure 9. The 

network can address the vanishing gradient problem by 

utilizing the LSTM cell topology. Older RNN designs 

struggled to provide accurate predictions for time series due 

to this issue. 

 

Figure 9. Standard LSTM model [33]. 

Rectified Linear Unit is a rather new activation function 

in neural networks. Here is  the math for it: output = 0 if 

input < 0, output = input. The choice of Non-linearity for 

DL models, as well as being computationally efficient, in 

practice turns out to make vanishing gradient less likely to 

occur. Essentially, deep networks that have ReLUs in them 

learn much faster as the gradients are backpropagated much 

more effectively in deep networks with a positive regime 

due to the flow whenever the input is positive. Owing to this, 

ease of programming, and possible highest effectiveness, 

ReLU has turned out to be the activation function of choice 

for the deep learning community. The only change made to 

the above code is that the function used to activate the 

LSTM layer is "relu". For multi-class classification 

problems, the "softmax" function is a common activation 

function for the output layer of neural networks. It maps 

real-valued vector scores to probability scores, though the 

actual mathematical equation computed by the softmax 

function involves normalizing the real-valued vector scores. 

It then goes on to interpret the components of the output 

vector as probabilities of membership to classes. The 

requirement of softmax arises when multiple classes need to 

be considered and the decision lies with one of them based 

on the highest probability in multi-class classification 

problems. According to Chen, Kim, and Gideon, in most 

cases, a combination of softmax and cross-entropy is used 

to train neural network classifiers. This is just the cross-

entropy between the output of the neural network and the 

ground truth label, and then its parameters are adjusted with 

back propagation to minimize cross entropy with changed 

parameters. that the network learns to model the relationship 

between input and label via a loss function softmax with 

cross-entropy, is not apparent, even if it is sensible to 

minimize the cross-entropy between labels and predicted 

probabilities. In the output layer of the LSTM model, the 

“softmax” activation function was used [31]. 

5. Result Analysis and Discussion 

This study trains and tests the model that is being 

proposed using the LSTM algorithm with a batch size of 512, 
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over a period of two epochs. In the training phase, the input 

features and target labels are packed into batches of training 

data to constantly update the model’s parameters iteratively. 

A simple progress bar belonging to the current epoch and 

tracking the training loss using 'train_on_batch' method, 

helps visualize the progress of the training phase. This is 

followed by an evaluation phase for each epoch. In this, the 

evaluation dataset is divided into batches to speed up the 

computation and have insight into the dynamical process. 

Moreover, classification metrics based on the confusion 

matrix distributions are applied and presented below. 

Figures [10-14] and table 1 show the results of the proposed 

model on the CICIoT2023 dataset. 

 
Figure 10.  LSTM model training  

Figure (10) depicts the model training process across 

two training cycles. It demonstrates clear stability in the 

process of minimizing the error function value over a short 

period of time, indicating efficient data preprocessing and 

good tuning of training parameters such as the learning rate 

and the choice of the number of cells in the LSTM layer. 

 

Figure 11. LSTM model testing. 

Figure (11) displays the results of testing the model on 

data not used during training. The model demonstrates 

excellent ability to generalize the acquired learning to new 

data, confirming the model's robustness in real-world 

applications in IoT environments. 

Table 1 Performance of proposed model. 

 
Details Result Result %% 

Accuracy score 99.1% 

Precision score 99.2% 

Recall score 98.96% 

f1_score 99.08% 

These results in table 1 indicate a very strong classification 

performance for the proposed model. The high specific 

accuracy (99.2%) reflects the model's ability to avoid false 

positives, an important aspect in security systems to avoid 

false alarms that can weaken the system's response. In 

contrast, the recall rate (98.96%) indicates the model's high 

ability to capture most real attack cases, reducing the 

likelihood of missing a real threat (false negatives), a pivotal 

point in intrusion detection. 

 

Figure 12. The proposed system train carve.  

The training curve in Figure (12) shows a rapid and 

consistent decline in the loss value across each training 

batch, demonstrating that the model is learning effectively 

without signs of overfitting, a finding also confirmed by the 

high test results. 

 

Figure 13. The ROC for proposed system 

Figure (13) displays the Receiver Operating 

Characteristic (ROC) curve, which measures the model's 

ability to discriminate between classes (TPR to FPR ratio). 

A high Area Under the Curve (AUC) indicates high 

classification accuracy and strong confidence in the model's 

decisions across various classification threshold. 

 

Figure 14. The confusion matrix.  
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The confusion matrix in Figure (14) highlights the 

number of cases that were correctly or incorrectly classified. 

The distribution shows that the percentage of errors (False 

Positives and False Negatives) is very low compared to the 

percentage of correct classifications (True Positives and 

True Negatives), enhancing the model's reliability in 

security-sensitive scenario. 

The performance metrics of the proposed model were 

evaluated, for the classification task. Experimental results of 

the, proposed model showed an F1 score of 99.08, a recall 

of,98.96, and a precision of 99.2, indicating strong, 

classification performance. Overall, this study contributes to 

enhancing IoT security through LSTM-based methods and 

lays the foundation for further exploration in this research. 

These results demonstrate the effectiveness of the LSTM 

model in processing and analyzing complex and noisy IoT 

traffic data. The model's high performance demonstrates its 

suitability for early detection of attacks and reducing the 

likelihood of human or technical error in intrusion detection 

systems. Compared to traditional algorithms, the proposed 

model demonstrates clear superiority, especially in handling 

time series data and understanding contextual relationships 

between features. Although the number of training cycles 

used was small (2 epochs), the results indicate that the 

model's architecture, preprocessing techniques, and class 

balance all contributed to accelerating the learning process 

and achieving accurate results in a short time. However, 

increasing the number of cycles in the future could further 

improve performance and allow for further improvements in 

model stability. 

6. Conclusion 

LSTM  approach is employed within the realm of IoT 

security, leveraging its ability to capture long-term 

dependencies in sequential data. The analysis is conducted 

using the CIC-IoT2023 dataset, purposefully curated for IoT 

security analytics. The LSTM model, meticulously 

configured for optimal performance, exhibits exceptional 

accuracy, with an F1 score of 99.08, recall of 0.98.96, and 

precision of 99.2, highlighting its reliability in categorizing 

IoT security threats. The study aims to underscore the 

significance of LSTM models in enhancing IoT security 

while emphasizing the need for further research to enhance 

their interpretability, scalability, and efficiency, particularly 

in large-scale IoT deployments. Future research directions 

include expanding the application scope of LSTM models, 

optimizing their performance through techniques like model 

compression and hardware acceleration, and fostering 

interdisciplinary collaboration to tackle IoT security 

challenges effectively. Overall, this study contributes to 

advancing IoT security using LSTM-based methods and sets 

the stage for further exploration in this domain.                                                                                                                                               
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