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Abstract. Internet of Things (IoT) technology is experiencing rapid development and increasing
use in a variety of applications, making it a potential target for cyber-attacks. Machine learning and
deep neural network techniques are an effective way to address these challenges and improve IoT
security. This research aims to design a deep learning techniques for intrusion detection in an Internet
of Things environment with limited resources. The research focuses on improving the efficiency and
effectiveness of current model using artificial intelligence and LSTM algorithms, ensuring reliable
and effective security in the [oT environment. The proposed model is evaluated using a realistic data
set, Canadian Institute for Cybersecurity Internet of Things 2023 Dataset (CICIoT2023) devices, and
using performance metrics, namely Accuracy, Precision, F1 Score, and Recall. The results show its
compatibility and effectiveness in a real environment, with 99.1% accuracy recorded. This paper is
considered an important contribution to the field of IoT security and provides an effective
methodology for developing advanced security solutions in the IoT environment that enhance traffic
analysis, identify abnormal behavior, and take the necessary measures.
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1. Introduction service (DoS), data exfiltration, botnet deployment, and

unauthorized access. Traditional intrusion detection systems

he Internet of Things (IoT) illustrated in Figure 1,
Trepresents a paradigm shift in modern computing,
connecting billions of devices—including sensors,
actuators, and embedded systems—to share data and
perform tasks autonomously. The IoT is now deeply
integrated

sectors, such as healthcare,

manufacturing, transportation, and smart cities. However,

into many

the increasing ubiquity and complexity of IoT systems have
also introduced significant security vulnerabilities,
particularly due to their resource-constrained nature,
heterogeneous protocols, and limited built-in defense

mechanisms.

As ToT networks continue to expand, the cyber threats
targeting them have become more sophisticated, frequent,
and difficult to detect. Common attacks include denial of

(IDS), which rely heavily on static rules or signature-based
detection, often fail to generalize well to sophisticated and
previously unseen attacks. This creates an urgent need for
intelligent, adaptive, and lightweight IDS solutions that
operate efficiently in real-time and under the resource
constraints typical of IoT environments.

Current intrusion detection techniques suffer from
limitations in IoT environments due to high false positive
rates, poor adaptability to new threats, and a lack of
contextual learning from sequential traffic patterns.
Furthermore, IoT datasets are often imbalanced and noisy,
impairing the learning ability of traditional models [1].
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Figure 1 Applications of Internet of Things [1].

This paper aims to leverage deep learning, specifically
the Long Short-Term Memory (LSTM) architecture, to
build a robust IDS framework specifically designed for [oT
networks. LSTM networks are known for their ability to
learn temporal dependencies in sequential data and are well-
suited for modeling network traffic patterns over time and
distinguishing between normal and malicious behavior. The
goal is to train and evaluate an LSTM-based model on the
CICIoT2023 dataset—a modern, realistic IoT traffic
dataset—Dby applying a structured preprocessing pipeline to
address missing values, balancing the class distribution

using Synthetic Minority Oversampling Technique (SMOT),

and normalizing features using a min-max metric.

The paper hypothesizes that an LSTM model, when
trained on a properly preprocessed and balanced IoT dataset,
can achieve high detection accuracy with minimal false
positives, outperforming traditional rule-based or shallow
learning models in intrusion detection tasks.

The remaining sections of the paper are organized as
follows:

e Section II provides a detailed review of related
work and current IoT intrusion detection
techniques.

e Section III outlines the proposed methodology,
including dataset preparation, preprocessing
steps, and LSTM model configuration.

. Section 4 presents experimental results and
analyses,
and comparison with related models.

including performance evaluation

. Section 5 concludes with key findings and
future research directions

https://csj.nabea.pub

1.1 Internet of Things Architecture

Especially in large IoT networks, where there are
challenges related to data integrity and confidentiality. The
number of security concerns such as exposing them to
cyber-attacks has increased [2]. Constant, unmanaged
exposure to the Internet can leave devices and the
underlying network vulnerable to various types of attacks.
As Internet-connected IoT devices grow, the point of attack
and the potential risk of these devices being compromised
and exploited in unwanted cyberattacks also increases.

The three-layer IoT architecture, as shown in figure 2,
consists of the following main layers: perception layer,
network layer, and application layer. We will highlight each
layer in the following context.

Application - ¢ o v :
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Figure 2. loT layers Architecture [3].
1.11

The perception layer consists of devices, such as sensors,

Perception layer

that enable it to optimize its surrounding environment. This
layer is like the sensory system of things, where devices
collect information about the surroundings and send it
across the network. Devices in this layer include, for
example, temperature and humidity sensors and medical
devices. Besides sensing functions, this layer also includes
action execution devices, such as actuators, that react and
execute required commands[4].

1.1.2

The network layer is a means of transferring data from
the perception layer to the application layer via specific
paths. Its primary function is to receive data from devices in

Network layer

the perception layer and route it through integrated networks
to the application layer. Network and mobile technologies
used include IEEE802.11, 4G, 5G, Bluetooth, and Zigbee.
In addition, this layer also includes the network
management process to ensure the smooth and error-free
operation of IoT systems[5].
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1.1.3 Application layer

This layer provides application services to users and
subscribers. The layer uses the context collected from the
lower layers to provide smart applications such as smart
homes, e-health, and smart transportation to end users. This
layer is an essential part of the IoT system as it collects
information from the underlying technologies to provide
useful and easy-to-use applications to end users.

The Internet of Things aims to connect things to a
network and collect and process the information provided
by these things. IoT networks are enabled by capabilities
that are logically classified into two main categories: device
capabilities and gateway capabilities. Hardware capabilities
include direct and indirect interaction with the network,
while gateway capabilities include support for multiple
interfaces and protocol switching [3-6].

1.1.4 Security Attacks in the loT Network —
Perception Layer Environment

Security challenges in the perception layer environment
of the Internet of Things become really important because
of the device and connection diversity plus a large number
of connected devices. Since their main function is to collect
data, then they become vulnerable to data forgery and theft
as well as attacks on the information gathered by the IoT
devices; also, it may lead to damage to the IoT devices and
make the network completely unavailable.

1. Waterway attacks: A compromised node in the
perception layer advertises tempting false
power, computation, and communications

capabilities to the nearby nodes such that they

divert data traffic to the node. This then permits
the attacker to collect data traffic or distort data
traffic before delivering it to the application

layer.

2. Node capture breaches: This attack discloses
sensitive information, such as group keys and
radio keys from the compromised node,
therefore compromising the security of the
entire system.

3. Injecting malicious codes: By exploiting
vulnerabilities and injecting malicious codes,
the attacker could assume control of a node or
device at the perception layer, thereby leading
to unauthorized operations.

4. 4. False data injection attacks: Gain on the node
or device is taken; thereafter, instead of real

https://csj.nabea.pub

data, false data is injected, negatively
impacting the system’s effectiveness.

5. Replay attacks:  Successful legitimate
identification information acquisition from the

source host enables a follow-up attack.

6. Eavesdropping: Wireless device-to-device
communication can be utilized by an attacker
to capture useful data.

7. Sleep Deprivation Attacks: The smart node in
the perception layer has its battery drained
through increased power consumption or
actions it was not supposed to take during its
sleep period, which is how sleep deprivation
attacks work. These attacks would require
strong security strategies to be considered in
the list of actions that need to be taken to secure
against security threats in the environment of
the Internet of Things perception layer. An
entity, whether legitimate or not, can assert its
identity through multiple identifiers at the
disposal of it, thereby muddling the perception
layer. E.g., an illegitimate entity can
communicate with several other entities to
enhance its standing and even con the entire
system into drawing false conclusions.

8. In a black hole attack, the attacker tries to
create artificial packet loss at the perception
layer. For this, packets are delivered by the
compromised node that represents an IoT
where packets are delivered, which should not
be said forward to the next node. This can be
very harmful when coupled with a denial of
service attack because due to one more such
attacks, the compromised node can singly more
nodes.

9. Finally, Denial of Service (DoS) attacks, the
main goal is to exhaust the resources of the
perception layer to make the entire IoT or a
specific node unavailable. For example,
jamming attacks can disrupt communication
between IoT sensors and the gateway, resulting
in disruption to services provided to users.
These attacks can be carried out by sending
high-range  signals to overload the

communication channel between devices, or by

flooding the gateway with forged data.

In addition, there are important security requirements for
IoT and gateway, such as communications security, data
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management security, service delivery security, integration
of security policies and technologies, mutual authentication
and authorization, and security auditing. The gateway
should implement these requirements to ensure security and
privacy in the IoT system.[7-9].

1.1.5 |oT Security and Privacy Requirements

According to ITU-T Recommendation Y.2066, a
list of security and privacy protection requirements for loT
is provided. These requirements refer to the functionality
required during the capture, storage, transmission,
collection, and processing of object data, as well as the
provision of services involving objects. These requirements
are relevant to all players in the IoT field. Below are these
requirements[15-18]:

- Communications security: There must be a secure, reliable,
and privacy-protected communication capability, which
allows blocking unauthorized access to data content,
ensures data integrity, and protects privacy-related data
content during transmission or transfer over the Internet of
Things.

- Data management security: There must be a safe, reliable,
and privacy-protected data management capability, which
allows blocking unauthorized access to data content,
ensures data integrity, and secures privacy-related data
content when stored or processed in the Internet of Things.

- Service delivery security: The possibility of providing a
secure, reliable, and privacy-protected service must be
provided, which allows blocking unauthorized access to the
service and enables illicit service provision, and protects the
privacy information of IoT users.

- Integration of security policies and technologies: Different
security policies and technologies must be standardized to
ensure consistent security control over a variety of devices
and user networks in the Internet of Things.

- Mutual authentication and authorization: Before accessing
the ToT, mutual authentication and authorization must be
performed between the device (or IoT user) and the IoT
according to defined security policies.

- Security Audit: IoT must be supported by security audit to
ensure transparency, traceability, and redundancy of data
transmission, storage, processing, and application access.

In addition, ITU-T Recommendation Y.2067 provides
specific security requirements that a gateway should
implement, which helps achieve security in an IoT system.
As shown in Figure 3.

https://csj.nabea.pub

1.1.6  Security Considerations

As we increasingly rely on interconnected smart devices
in our daily lives, the risk of these devices or “things” being
targeted by attacks and intrusions is also increasing,
potentially leading to device malfunctions and putting our
privacy and safety at risk. So, security turns out to be a major
challenge to consider along with safety in IoT. This follows
closely on the physical world. In addition, the issue of
managing loT devices points to the challenges you may face
in terms of accountability, diversity that characterizes the
IoT ecosystem, and scalability issues. There are many
different concerns that hinder the standardization of secure
IoT ecosystems, including large-scale attacks, limited

hardware resources, diversity in the ecosystem,

fragmentation of standards and regulations, widespread
deployment, security updates, insecure programming, and

unclear obligations in liability guidance [19-20].
2. Related Works

The last ten years have seen a growing interest in
securing Internet of Things devices from cyber threats. This
has led to extensive research in machine learning and deep
learning. A number of studies have been conducted to
improve the accuracy of intrusion detection while reducing
the number of false positives. For example, the study
proposed a deep learning ensemble methodology that
included CNN, GRU, and LSTM which when used together
achieved an accuracy of 99.7% based on data from NSL-
KDD. Another example is a study that proposed a
lightweight dense random neural network (DnRaNN) that
achieved an accuracy of 99.14% based on ToN_IoT. While
another study proposed a CNN-BiLSTM model with batch
normalization which improved the accuracy to 96.3% on
NSL-KDD. More studies used artificial neural networks to
detect IoT threats with an 84% accurate result like in the
study conducted by and showed that Decision Tree and
Random Forest models could hit 100% accuracy based on
the CICIOT2023 dataset. Another study that used LSTM for
the same purpose is conducted by Chaganty et al. in the year
2022 with a result of achieving 97.1% accuracy in intrusion
detection in SDN-IoT networks. Further recent
developments include a lightweight model DL-BiLSTM [3]
and the architecture of Bi-GRU-CNN (2023) having results
better than the traditional way of detecting malware. These

CyberSystem Journal, vol. 2 no. 1, pp. 53-64 June 2025



57

Noor et al.; Leveraging deep Learning for Efficient Intrusion Detection in loT Networks

studies have collectively strengthened the security of IoT,
leading to high robustness and accuracy in detecting system-
intruded cyber threats[20-26].

In conclusion, studies conducted by many researchers
emphasize the critical importance of securing Internet of
Things (IoT) devices against cyber threats and unauthorized
Each study proposes innovative approaches,
leveraging machine learning (ML) and deep learning (DL)
techniques, to enhance intrusion detection and cybersecurity
in [oT environments. These methodologies address diverse
challenges, such as resource constraints, data complexity,
and the evolving nature of cyber threats. Specifically,
studies highlight the effectiveness of ensemble-based deep
learning models, lightweight neural networks, and LSTM-

access.

based methods in detecting and mitigating [oT-based attacks.

Collectively, these studies contribute valuable insights and
solutions to enhance the security and resilience of the
Internet of Things. Ecosystems against cyber threats in an
expanding digital landscape [27-28].

3. Methodology

This study designs and experimentally evaluates an
intelligent intruder detection model for the Internet of
Things (IoT) environment. The proposed model uses a deep
neural network model known as Long Short-Term Memory
(LSTM), which belongs to a subclass of recurrent neural
networks specialized for time series data. The methodology
begins by clarifying the research problem of the poor
performance of legacy intrusion detection systems in
detecting advanced and unknown cyberattacks within
heterogeneous IoT networks where data sources are
multiple. The real-world CICIoT2023 dataset is used, which
simulates 33 different types of attacks distributed across
more than 105 IoT devices; therefore, it has a highly
representative and realistic data structure.

The first steps in preprocessing were to address missing
data and noise by removing them, then balancing the class
distribution using the synthetic
oversampling(SMOTE) to eliminate the class imbalance
problem. Applying Min-Max normalization helps
standardize the range of numeric values, thus making the
learning model more stable. The data is then split into two
sets for training and testing at a ratio of 80/20, respectively.

minority

The proposed model is built using an LSTM layer with
64 memory cells, a dropout layer to mitigate overfitting, and
a sigmoid output layer to support binary classification. The
model is trained using the Adaptive Moment
Estimation (Adam) optimizer and the Binary Cross entropy

https://csj.nabea.pub

function as a loss metric. Performance is evaluated using
important metrics such as precision, recall, accuracy, and

performance metric that balances precision and recall( F1

score) . The model was developed in Google Collab using
TensorFlow, Kera’s, and Scikit-learn for ease of
implementation and reproducibility. Furthermore, this
performance is compared to standard classification methods,
including Random Forest and SVMs. This comparison aims
to determine whether the proposed model outperforms in
terms of its handling of time series data and generalization
efficiency.

CICloT2023

dataset

Handel missing value

h 4

Balancing data using SMOTE
from over sampling technique

!

Mix-Min normalization

|

*{ New features set ‘
Traili&ﬂ%

‘ Deep Learning Model ‘

Pre-proccessing

LSTM

Test 20%

¥

]

Evaluation

A,

|' | Attack Traffic | |

BenignTraffic
O /)

Figure 3. The layout of the proposed methodology.

Figure 3 in this section shows the proposed methodology
for building an artificial intelligence model that focuses on
detecting cyber-attacks and intrusions using deep learning
techniques.
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The main stages include defining the problem, collecting
data, pre-processing for consistency, selecting relevant
features for the Artificial Intelligence (AI) model, selecting
an appropriate machine learning algorithm based on data
characteristics, and training and evaluating the selected
models. Finally, the optimized model is deployed to obtain
realistic predictions in fraud detection and user behavior
evaluation.

The study uses LSTM with the “CICloT2023”
dataset. Model performance is evaluated using metrics of
precision, recall, and F1 score for a
comprehensive evaluation.

precision,

A visualization of the proposed approach is shown in Fig.

This methodology provides a well-organized strategy for
developing the proposed deep Al model, which contributes
to early mitigation of security risks. The proposed model
consists of several main stages, which will be explained in
the following section:

3.1 Dataset

A dataset referred to as “CIC IoT Dataset 2023” which
is considerably new, was brought into formation to support
programs of analysis concerning security within the IoT
environment. This dataset comprises 33 varieties of attacks
carried out on more than 105 IoT devices and is split into
seven main categories. The first six are DDoS, DoS, Web-
based, Brute Force, Spoofing, and Mirai attacks; the
malicious IoT devices on other IoT devices carry these out.
The last one is Recon.

D00 (33.984.560 rows) 005 8090738 rowd

Recon (354,565 rows)

Brute Force (13,064 rows)

Sooofing (486,504 rows)

Ml (2634124 rowsd

Benign (1,078,195 rows

Figure 4. Dataset overview[41].

Figure 4 presents numerous [oT cyber-attacks as well as
an equal number of dataset rows hence posing a threat to
cybersecurity concerning the availability and integrity of
computer systems and networks. The attacks comprise
floods such as UDP and ICMP Floods and hash-based
attacks which are incorporated in DDoS attacks. A

https://csj.nabea.pub

disruption of service is caused by flooding a single source
with traffic; web-based attacks use SQL Injection and XSS,
among many other related web application attacks. Brute
force attacks try to gain unauthorized access to something
by determining a username and password combination,
while other attacks try to impersonate network traffic or
actual entities. In the end, Mirai attacks typically focus on
IoT devices and include GRE IP, and UDP Plain attacks.

The dataset gives a full detailed preview about the
attributes and behaviors about network traffic packets-
timestamp, flow duration, protocol type, data transfer rate,
number of tags, etc., so that it will help network
professionals to comprehensively and accurately examine
the network performance and security posture [29] .

3.2 Preprocessing

" CIC IoT Dataset 2023" is imbalanced nature. Figure
5 shows unbalancing " CIC IoT Dataset 2023 dataset.

Out[5]: target
1 1491208
e 33836
Mame: count, dtype: inté4

count

Figure 5. distribution of classes in

unbalanced dataset

To address class imbalance in the CICIOT2023 dataset,
the SMOTE technique is applied. First, the minority class
within the data set is identified, which typically represents
the least frequent class. Preprocessing involves separating
features and the target variable. SMOTE is then used.
Artificial samples are created for the minority class. The
original dataset is then combined with these synthetic
samples to create a balanced dataset[30]. This approach
aims to mitigate the class imbalance problem, which may
improve the model's performance on tasks such as intrusion
detection or classification. Figure 6 shows the distribution
of classes in the dataset after applying the SMOT method.

CyberSystem Journal, vol. 2 no. 1, pp. 53-64 June 2025
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target
1 1401208
2] 1401208

Name: count, dtype: inté4d

count

0

Figure 6. distribution of classes in balanced
dataset.

3.3 Normalization

An additional preprocessing procedure involves min-
max normalization, often referred to as feature scaling. This
method entails applying a linear transformation to the data,
effectively rescaling it within a range of (0, 1) [31]. The
normalization process is carried out in accordance with
equation (1):

x—min (x)

X new = m (1)

Where x new represent normalized x.

3.4 Splitting dataset

The data set is divided into two parts: a training part and
a validation part. The training portion (80%) is used to train
the neural network of the proposed model. Training data is
fed to the neural network, and the weights and parameters
are updated during the training process using capture and
optimization algorithms. Between training rounds, the
remaining portion (20%) allocated to validation is used to
evaluate the network's performance and verify its ability to
handle new data that was not used in training. Performance
metrics, such as accuracy rate and confusion matrix, are
used to evaluate the model's performance and effectiveness
in dealing with the tasks at hand.

4. Machine learning

https://csj.nabea.pub

Machine learning, which is the basic part of Al, enables
algorithms to learn from data and make decisions. These
comprise supervised and unsupervised learning and
reinforcement learning. In supervised learning, models are
built for making predictions based on labeled data; in
unsupervised learning, data is used for finding patterns, and
in reinforcement learning, the model makes optimum
decisions based on the interaction between an agent and an
environment. The supervised methods covered include
support vector machines, decision trees, and logistic
regression, with the last being used when the output variable
is continuous. This structure gives very good tools for data
analysis, prediction, and decision-making in different
application [30].

Types of Machine Learning

Machine
Learning

Supervised

Unsupervised

Data Driven Learn from
(Predict next value) (Identify Clusters) Mistakes

PV R |

Figure 7. Type of Machine learning [36].

Task Driven

The deep learning algorithm LSTM was chosen, as
described in the next section.

4.1 Long Short-Term Memory (LSTM)

The architecture of long-term memory (LSTM) neural
networks has evolved over time and is described by the most
common architecture shown in figure 8. The LSTM unit
comprises within the cell core three gates, which govern the
information flow and state of the cell. These gates are the
input gate, output gate, and forget gate. Those cells are
interconnected with each other which means that all
information which is used as a memory has to be inside one
LSTM cell.
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Figure 8. LSTM cell architecture [33].

This is the structure of an LSTM cell representing the
input-output time step, where X is the input, /4 is the output,
C is the cell state, and f is the forget gate. The processes are
shown as dots inside the light red circle. These gates are
based on common sense:

a) The forget gate directs the cell to "forget" or discard
information from its internal state.

b) The cell is routed through an input gate, where new
information is stored in the cell's internal state.

c) Next, the cell emits what is known as an output gate,
which is a filtered output of the cell's internal state.

f=oWf - [h-1X]+) (2)
=W - [h—1,X]+ b) 3)
0 =0cWO -[h—-1,X] + bO) (C))
C" =tanh (WC - [h—1,X]+ bC) (5)
Then, the internal cell state is computed as
C=-C+f-C-1 (6)

The final output from the cell, or 4, is then filtered with
the internal cell state as
h = - tanh(C) (6)

Weights and biases are associated with each gate, much
like in neural networks. To enable an LSTM cell to learn,
these weight matrices are integrated with gradient-based
optimization. In the above equations, weight matrices and
biases are denoted by symbols , bf , W, b, W, b, and WC,
b, respectively. An Recurrent Neural
Network( RNN)/LSTM network retains data from previous
time steps and generates predictions for time series by
sequencing these cells, as illustrated in Figure 9. The
network can address the vanishing gradient problem by
utilizing the LSTM cell topology. Older RNN designs
struggled to provide accurate predictions for time series due
to this issue.

https://csj.nabea.pub

Output Sequence

LSTM ' f, 4 L LSTM
Cell 1 - Cell

Input Sequence

Figure 9. Standard LSTM model [33].

Rectified Linear Unit is a rather new activation function
in neural networks. Here is the math for it: output = 0 if
input < 0, output = input. The choice of Non-linearity for
DL models, as well as being computationally efficient, in
practice turns out to make vanishing gradient less likely to
occur. Essentially, deep networks that have ReLUs in them
learn much faster as the gradients are backpropagated much
more effectively in deep networks with a positive regime
due to the flow whenever the input is positive. Owing to this,
case of programming, and possible highest effectiveness,
ReLU has turned out to be the activation function of choice
for the deep learning community. The only change made to
the above code is that the function used to activate the
LSTM layer is "relu". For multi-class classification
problems, the "softmax" function is a common activation
function for the output layer of neural networks. It maps
real-valued vector scores to probability scores, though the
actual mathematical equation computed by the softmax
function involves normalizing the real-valued vector scores.
It then goes on to interpret the components of the output
vector as probabilities of membership to classes. The
requirement of softmax arises when multiple classes need to
be considered and the decision lies with one of them based
on the highest probability in multi-class classification
problems. According to Chen, Kim, and Gideon, in most
cases, a combination of softmax and cross-entropy is used
to train neural network classifiers. This is just the cross-
entropy between the output of the neural network and the
ground truth label, and then its parameters are adjusted with
back propagation to minimize cross entropy with changed
parameters. that the network learns to model the relationship
between input and label via a loss function softmax with
cross-entropy, is not apparent, even if it is sensible to
minimize the cross-entropy between labels and predicted
probabilities. In the output layer of the LSTM model, the
“softmax” activation function was used [31].

5. Result Analysis and Discussion

This study trains and tests the model that is being
proposed using the LSTM algorithm with a batch size of 512,
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over a period of two epochs. In the training phase, the input
features and target labels are packed into batches of training
data to constantly update the model’s parameters iteratively.
A simple progress bar belonging to the current epoch and
tracking the training loss using 'train_on batch' method,
helps visualize the progress of the training phase. This is
followed by an evaluation phase for each epoch. In this, the
evaluation dataset is divided into batches to speed up the
computation and have insight into the dynamical process.
Moreover, classification metrics based on the confusion
matrix distributions are applied and presented below.
Figures [10-14] and table 1 show the results of the proposed
model on the CICIoT2023 dataset.

Model: "sequential 7"

_18 (Dropeut) (Hone, 45, 50) a

simple_rnn_12 (SimpleRiN)  (Mone, 46, 50) 550

19 (Dropout) (Hene, 46, @) @

3 (SimpleRNN)  (Hone, 58) 5850

=] - 15755 22ms/step - loss: B.B182 - accuracy: ©.5928 - val_loss: B.8@81 - val_accw

==] - 581s 7ms/step - loss: 0.8073 - accuracy: ©.9911

Figure 10. LSTM model training

Figure (10) depicts the model training process across
two training cycles. It demonstrates clear stability in the
process of minimizing the error function value over a short
period of time, indicating efficient data preprocessing and
good tuning of training parameters such as the learning rate
and the choice of the number of cells in the LSTM layer.

17516/17516 [ ] - 1325 8ms/step
17516/17516 [ ] - 134s 8ms/step
Accuracy: ©.998913
Precision: ©.992163
Recall: 8.989621
F1 score: ©.990890
Cohens kappa: ©.981826
ROC AUC: ©.998913
[[278397 2188]
[ 2905 276994]]

Figure 11. LSTM model testing.

Figure (11) displays the results of testing the model on
data not used during training. The model demonstrates
excellent ability to generalize the acquired learning to new
data, confirming the model's robustness in real-world
applications in IoT environments.

Table 1 Performance of proposed model.

] - 1578s 22ms/step - loss: B.6119 - accuracy: 8.9986 - val_loss: B.6676 - val_acew

Details Result Result % % \
Accuracy score 99.1%
Precision score 99.2%
Recall score 98.96%
fl _score 99.08%

https://csj.nabea.pub

These results in table 1 indicate a very strong classification
performance for the proposed model. The high specific
accuracy (99.2%) reflects the model's ability to avoid false
positives, an important aspect in security systems to avoid
false alarms that can weaken the system's response. In
contrast, the recall rate (98.96%) indicates the model's high
ability to capture most real attack cases, reducing the
likelihood of missing a real threat (false negatives), a pivotal
point in intrusion detection.

) o2 04 a8 o8 1o

Figure 12. The proposed system train carve.

The training curve in Figure (12) shows a rapid and
consistent decline in the loss value across each training
batch, demonstrating that the model is learning effectively
without signs of overfitting, a finding also confirmed by the

high test results.
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Figure 13. The ROC for proposed system

Figure (13) displays the Operating
Characteristic (ROC) curve, which measures the model's
ability to discriminate between classes (TPR to FPR ratio).
A high Area Under the Curve (AUC) indicates high
classification accuracy and strong confidence in the model's
decisions across various classification threshold.

Receiver

precision recall fl-score support

] @.99 0.99 @.99 288585

1 9.99 08.99 8.99 279899

accuracy @.99 5608484
macro avg @.99 09.99 @.99 5608484
weighted avg 8.99 .99 9.99 568484

Figure 14. The confusion matrix.
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The confusion matrix in Figure (14) highlights the
number of cases that were correctly or incorrectly classified.
The distribution shows that the percentage of errors (False
Positives and False Negatives) is very low compared to the
percentage of correct classifications (True Positives and
True Negatives), enhancing the model's reliability in
security-sensitive scenario.

The performance metrics of the proposed model were
evaluated, for the classification task. Experimental results of
the, proposed model showed an F1 score of 99.08, a recall
0f,98.96, and a precision of 99.2, indicating strong,
classification performance. Overall, this study contributes to
enhancing [oT security through LSTM-based methods and
lays the foundation for further exploration in this research.
These results demonstrate the effectiveness of the LSTM
model in processing and analyzing complex and noisy IoT
traffic data. The model's high performance demonstrates its
suitability for early detection of attacks and reducing the
likelihood of human or technical error in intrusion detection
systems. Compared to traditional algorithms, the proposed
model demonstrates clear superiority, especially in handling
time series data and understanding contextual relationships
between features. Although the number of training cycles
used was small (2 epochs), the results indicate that the
model's architecture, preprocessing techniques, and class
balance all contributed to accelerating the learning process
and achieving accurate results in a short time. However,
increasing the number of cycles in the future could further
improve performance and allow for further improvements in
model stability.

6. Conclusion

LSTM approach is employed within the realm of IoT
security, leveraging its ability to capture long-term
dependencies in sequential data. The analysis is conducted
using the CIC-10T2023 dataset, purposefully curated for IoT
security analytics. The LSTM model,
configured for optimal performance, exhibits exceptional
accuracy, with an F1 score of 99.08, recall of 0.98.96, and

meticulously

precision of 99.2, highlighting its reliability in categorizing
IoT security threats. The study aims to underscore the
significance of LSTM models in enhancing IoT security
while emphasizing the need for further research to enhance
their interpretability, scalability, and efficiency, particularly
in large-scale IoT deployments. Future research directions
include expanding the application scope of LSTM models,
optimizing their performance through techniques like model
compression and hardware acceleration, and fostering
interdisciplinary collaboration to tackle IoT security

https://csj.nabea.pub

challenges effectively. Overall, this study contributes to
advancing [oT security using LSTM-based methods and sets
the stage for further exploration in this domain.
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