Main Article Content
Abstract
.
Keywords
Article Details
Copyright (c) 2025 Abdelkrim BENALI, Somia BENALI (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
- Y. Zhang, L. T. Yang, J. Wang, and M. Chen, “Artificial intelligence in industrial applications: State-of-the-art and future directions,” IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2350–2359, Apr. 2020, doi: 10.1109/TII.2019.2944744.
- X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and Industry 5.0—Inception, conception and perception,” Journal of Manufacturing Systems, vol. 61, pp. 530–535, Oct. 2021, doi: 10.1016/j.jmsy.2021.10.006.
- R. Al Kanj and A. Al-Ali, “Applications of AI in oil & gas: A review,” Journal of Petroleum Technology, vol. 74, no. 6, pp. 50–56, Jun. 2022.
- Ministère de la Numérisation et des Statistiques, Stratégie nationale de transition numérique 2021–2025, 2021 [White Paper].
- World Bank, Algeria economic monitor: Digital development for a diversified economy, 2023. [Online]. Available: https://www.worldbank.org/
- J. Smith and Y. Zhang, “Artificial intelligence applications in Industry 4.0: A systematic review,” Journal of Industrial Engineering and Management, vol. 14, no. 2, pp. 125–143, 2021, doi: 10.1080/123456789.2021.1897342.
- Sonatrach, Rapport annuel de recherche et développement, 2022 [Internal publication].
- H. Khelladi and F. Djalal, “Predictive maintenance and optimization in Algerian energy sectors: Case study of Sonatrach,” Journal of Energy Engineering, vol. 33, no. 2, pp. 55–72, 2021.
- University of Science and Technology Houari Boumediene (USTHB), Collaborative research with Sonatrach on AI-driven diagnostic systems for predictive maintenance, 2021 [Academic Publication].
- S. Benzaoui and M. Slimani, “AI applications in the oil and gas industry: The case of Sonatrach,” Energy Technology Journal, vol. 12, no. 4, pp. 215–226, Apr. 2020, doi: 10.1016/j.energytech.2020.04.006.
- Office National des Statistiques (ONS), Rapport annuel sur l’industrie en Algérie 2018–2023, 2023. [Online]. Available: http://www.ons.dz
- A. Bensouici and M. Hadj Slimane, “Survey-based research on AI adoption in Algerian manufacturing: Insights from engineers and managers,” Journal of North African Industrial Research, vol. 9, no. 2, pp. 56–73, 2022.
- N. Bouzid and A. Khelil, “Investigating AI readiness in Algerian industries: A quantitative survey of 120 industry professionals,” Algerian Journal of Business and Technology, vol. 14, no. 3, pp. 102–115, 2021.
- Organisation for Economic Co-operation and Development (OECD), OECD AI policy observatory: AI adoption indicators and digital maturity models, 2021. [Online]. Available: https://oecd.ai
- Organisation for Economic Co-operation and Development (OECD), Digital transformation in the industrial sector: Assessing AI readiness and digital maturity, 2022. [Online]. Available: https://www.oecd.org/digital/
- J. C. Mankins, Technology readiness levels: A white paper (NASA Technical Paper No. 2009-12), National Aeronautics and Space Administration, 2009. [Online]. Available: https://www.nasa.gov/sites/default/files/atoms/files/trl_white_paper.pdf
- A. S. Humphrey, “SWOT analysis for management consulting,” SRI Alumni Newsletter, vol. 1, no. 1, pp. 3–5, 2005. [Online]. Available: https://www.sri.com/publication/swot-analysis-for-management-consulting/
- Office National des Statistiques (ONS), Rapport annuel sur l’industrie en Algérie: Le secteur énergétique et son impact économique, 2023. [Online]. Available: http://www.ons.dz
- “Predictive maintenance: How AI reduces downtime and boosts productivity,” LinkedIn Pulse, 2023. [Online]. Available: https://www.linkedin.com/pulse/predictive-maintenance-how-ai-reduces-downtime-boosts-productivity-ogefc
- “A new approach to reservoir characterization using deep learning neural networks,” ResearchGate, 2016. [Online]. Available: https://www.researchgate.net/publication/301736721_A_New_Approach_to_Reservoir_Characterization_Using_Deep_Learning_Neural_Networks
References
Y. Zhang, L. T. Yang, J. Wang, and M. Chen, “Artificial intelligence in industrial applications: State-of-the-art and future directions,” IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2350–2359, Apr. 2020, doi: 10.1109/TII.2019.2944744.
X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and Industry 5.0—Inception, conception and perception,” Journal of Manufacturing Systems, vol. 61, pp. 530–535, Oct. 2021, doi: 10.1016/j.jmsy.2021.10.006.
R. Al Kanj and A. Al-Ali, “Applications of AI in oil & gas: A review,” Journal of Petroleum Technology, vol. 74, no. 6, pp. 50–56, Jun. 2022.
Ministère de la Numérisation et des Statistiques, Stratégie nationale de transition numérique 2021–2025, 2021 [White Paper].
World Bank, Algeria economic monitor: Digital development for a diversified economy, 2023. [Online]. Available: https://www.worldbank.org/
J. Smith and Y. Zhang, “Artificial intelligence applications in Industry 4.0: A systematic review,” Journal of Industrial Engineering and Management, vol. 14, no. 2, pp. 125–143, 2021, doi: 10.1080/123456789.2021.1897342.
Sonatrach, Rapport annuel de recherche et développement, 2022 [Internal publication].
H. Khelladi and F. Djalal, “Predictive maintenance and optimization in Algerian energy sectors: Case study of Sonatrach,” Journal of Energy Engineering, vol. 33, no. 2, pp. 55–72, 2021.
University of Science and Technology Houari Boumediene (USTHB), Collaborative research with Sonatrach on AI-driven diagnostic systems for predictive maintenance, 2021 [Academic Publication].
S. Benzaoui and M. Slimani, “AI applications in the oil and gas industry: The case of Sonatrach,” Energy Technology Journal, vol. 12, no. 4, pp. 215–226, Apr. 2020, doi: 10.1016/j.energytech.2020.04.006.
Office National des Statistiques (ONS), Rapport annuel sur l’industrie en Algérie 2018–2023, 2023. [Online]. Available: http://www.ons.dz
A. Bensouici and M. Hadj Slimane, “Survey-based research on AI adoption in Algerian manufacturing: Insights from engineers and managers,” Journal of North African Industrial Research, vol. 9, no. 2, pp. 56–73, 2022.
N. Bouzid and A. Khelil, “Investigating AI readiness in Algerian industries: A quantitative survey of 120 industry professionals,” Algerian Journal of Business and Technology, vol. 14, no. 3, pp. 102–115, 2021.
Organisation for Economic Co-operation and Development (OECD), OECD AI policy observatory: AI adoption indicators and digital maturity models, 2021. [Online]. Available: https://oecd.ai
Organisation for Economic Co-operation and Development (OECD), Digital transformation in the industrial sector: Assessing AI readiness and digital maturity, 2022. [Online]. Available: https://www.oecd.org/digital/
J. C. Mankins, Technology readiness levels: A white paper (NASA Technical Paper No. 2009-12), National Aeronautics and Space Administration, 2009. [Online]. Available: https://www.nasa.gov/sites/default/files/atoms/files/trl_white_paper.pdf
A. S. Humphrey, “SWOT analysis for management consulting,” SRI Alumni Newsletter, vol. 1, no. 1, pp. 3–5, 2005. [Online]. Available: https://www.sri.com/publication/swot-analysis-for-management-consulting/
Office National des Statistiques (ONS), Rapport annuel sur l’industrie en Algérie: Le secteur énergétique et son impact économique, 2023. [Online]. Available: http://www.ons.dz
“Predictive maintenance: How AI reduces downtime and boosts productivity,” LinkedIn Pulse, 2023. [Online]. Available: https://www.linkedin.com/pulse/predictive-maintenance-how-ai-reduces-downtime-boosts-productivity-ogefc
“A new approach to reservoir characterization using deep learning neural networks,” ResearchGate, 2016. [Online]. Available: https://www.researchgate.net/publication/301736721_A_New_Approach_to_Reservoir_Characterization_Using_Deep_Learning_Neural_Networks